Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2020_84_2_a0, author = {L. A. Beklaryan}, title = {A new approach to the question of~the~existence of~bounded solutions of~functional differential equations of}, journal = {Izvestiya. Mathematics }, pages = {209--245}, publisher = {mathdoc}, volume = {84}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a0/} }
TY - JOUR AU - L. A. Beklaryan TI - A new approach to the question of~the~existence of~bounded solutions of~functional differential equations of JO - Izvestiya. Mathematics PY - 2020 SP - 209 EP - 245 VL - 84 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a0/ LA - en ID - IM2_2020_84_2_a0 ER -
L. A. Beklaryan. A new approach to the question of~the~existence of~bounded solutions of~functional differential equations of. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 209-245. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a0/
[1] L. A. Beklaryan, “A new approach to the question of existence of periodic solutions for functional differential equations of point type”, Izv. Math., 82:6 (2018), 1077–1107 | DOI | DOI | MR | Zbl
[2] L. A. Beklaryan, Vvedenie v teoriyu funktsionalno-differentsionalnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007, 288 pp.
[3] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984, xix+409 pp. | MR | MR | Zbl | Zbl
[4] M. A. Krasnosel'skiĭ, The operator of translation along the trajectories of differential equations, Transl. Math. Monogr., 19, Amer. Math. Soc., Providence, RI, 1968, vi+294 pp. | DOI | MR | MR | Zbl | Zbl
[5] M. A. Krasnosel'skiy, A. I. Perov, A. I. Povolotskiy, P. P. Zabreiko, Plane vector fields, Academic Press, New York–London, 1966, viii+242 pp. | MR | MR | Zbl | Zbl
[6] V. N. Rozenvasser, Kolebaniya nelineinykh sistem, Nauka, M., 1969, 576 pp. | MR | Zbl
[7] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | DOI | MR | MR | Zbl | Zbl
[8] K. G. Valeev, O. A. Zhautykov, Beskonechnye sistemy differentsialnykh uravnenii, Nauka, Alma-Ata, 1974, 415 pp. | MR | Zbl
[9] A. I. Perov, I. D. Kostrub, Ogranichennye resheniya nelineinykh vektorno-matrichnykh differentsialnykh uravnenii $n$-go poryadka, Nauch. kn., Voronezh, 2013, 227 pp.
[10] L. A. Beklaryan, F. A. Belousov, “Periodic solutions of functional-differential equations of point type”, Differ. Equ., 51:12 (2015), 1541–1555 | DOI | DOI | MR | Zbl
[11] L. A. Beklaryan, “Quasitravelling waves”, Sb. Math., 201:12 (2010), 1731–1775 | DOI | DOI | MR | Zbl
[12] L. A. Beklaryan, “Kvazibeguschie volny kak estestvennoe rasshirenie klassa beguschikh voln”, Vestn. Tambovskogo un-ta. Ser. Estestvennye i tekhnicheskie nauki, 19:2 (2014), 331–340