A new approach to the question of~the~existence of~bounded solutions of~functional differential equations of
Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 209-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop an approach which we used to deduce conditions of a new type for the existence of periodic solutions of ordinary differential equations and functional differential equations of point type. These conditions are based on the use of asymptotic properties of solutions of differential equations which can be observed on shifts of solutions and stated in terms of averages over the period on a distinguished sphere in the phase space. The development of this approach enables us to obtain conditions for the existence of bounded solutions for the same classes of functional differential equations.
Keywords: functional differential equations, bounded solutions.
@article{IM2_2020_84_2_a0,
     author = {L. A. Beklaryan},
     title = {A new approach to the question of~the~existence of~bounded solutions of~functional differential equations of},
     journal = {Izvestiya. Mathematics },
     pages = {209--245},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a0/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - A new approach to the question of~the~existence of~bounded solutions of~functional differential equations of
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 209
EP  - 245
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a0/
LA  - en
ID  - IM2_2020_84_2_a0
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T A new approach to the question of~the~existence of~bounded solutions of~functional differential equations of
%J Izvestiya. Mathematics 
%D 2020
%P 209-245
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a0/
%G en
%F IM2_2020_84_2_a0
L. A. Beklaryan. A new approach to the question of~the~existence of~bounded solutions of~functional differential equations of. Izvestiya. Mathematics , Tome 84 (2020) no. 2, pp. 209-245. http://geodesic.mathdoc.fr/item/IM2_2020_84_2_a0/

[1] L. A. Beklaryan, “A new approach to the question of existence of periodic solutions for functional differential equations of point type”, Izv. Math., 82:6 (2018), 1077–1107 | DOI | DOI | MR | Zbl

[2] L. A. Beklaryan, Vvedenie v teoriyu funktsionalno-differentsionalnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007, 288 pp.

[3] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984, xix+409 pp. | MR | MR | Zbl | Zbl

[4] M. A. Krasnosel'skiĭ, The operator of translation along the trajectories of differential equations, Transl. Math. Monogr., 19, Amer. Math. Soc., Providence, RI, 1968, vi+294 pp. | DOI | MR | MR | Zbl | Zbl

[5] M. A. Krasnosel'skiy, A. I. Perov, A. I. Povolotskiy, P. P. Zabreiko, Plane vector fields, Academic Press, New York–London, 1966, viii+242 pp. | MR | MR | Zbl | Zbl

[6] V. N. Rozenvasser, Kolebaniya nelineinykh sistem, Nauka, M., 1969, 576 pp. | MR | Zbl

[7] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | DOI | MR | MR | Zbl | Zbl

[8] K. G. Valeev, O. A. Zhautykov, Beskonechnye sistemy differentsialnykh uravnenii, Nauka, Alma-Ata, 1974, 415 pp. | MR | Zbl

[9] A. I. Perov, I. D. Kostrub, Ogranichennye resheniya nelineinykh vektorno-matrichnykh differentsialnykh uravnenii $n$-go poryadka, Nauch. kn., Voronezh, 2013, 227 pp.

[10] L. A. Beklaryan, F. A. Belousov, “Periodic solutions of functional-differential equations of point type”, Differ. Equ., 51:12 (2015), 1541–1555 | DOI | DOI | MR | Zbl

[11] L. A. Beklaryan, “Quasitravelling waves”, Sb. Math., 201:12 (2010), 1731–1775 | DOI | DOI | MR | Zbl

[12] L. A. Beklaryan, “Kvazibeguschie volny kak estestvennoe rasshirenie klassa beguschikh voln”, Vestn. Tambovskogo un-ta. Ser. Estestvennye i tekhnicheskie nauki, 19:2 (2014), 331–340