Linear forms of a given Diophantine type and lattice exponents
Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove an existence theorem concerning linear forms of a given Diophantine type and apply it to study the structure of the spectrum of lattice exponents.
Keywords: lattice exponents, linear forms of a given Diophantine type.
Mots-clés : Diophantine approximation
@article{IM2_2020_84_1_a1,
     author = {O. N. German},
     title = {Linear forms of a given {Diophantine} type and lattice exponents},
     journal = {Izvestiya. Mathematics },
     pages = {3--22},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a1/}
}
TY  - JOUR
AU  - O. N. German
TI  - Linear forms of a given Diophantine type and lattice exponents
JO  - Izvestiya. Mathematics 
PY  - 2020
SP  - 3
EP  - 22
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a1/
LA  - en
ID  - IM2_2020_84_1_a1
ER  - 
%0 Journal Article
%A O. N. German
%T Linear forms of a given Diophantine type and lattice exponents
%J Izvestiya. Mathematics 
%D 2020
%P 3-22
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a1/
%G en
%F IM2_2020_84_1_a1
O. N. German. Linear forms of a given Diophantine type and lattice exponents. Izvestiya. Mathematics , Tome 84 (2020) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/IM2_2020_84_1_a1/

[1] J. W. S. Cassels, An introduction to the geometry of numbers, Classics Math., Corr. reprint of the 1971 ed., Springer-Verlag, Berlin, 1997, viii+344 pp. | DOI | MR | MR | Zbl | Zbl

[2] Z. I. Borevich, I. R. Shafarevich, Number theory, Pure Appl. Math., 20, Academic Press, New York–London, 1966, x+435 pp. | MR | MR | Zbl | Zbl

[3] W. M. Schmidt, “Norm form equations”, Ann. of Math. (2), 96:3 (1972), 526–551 | DOI | MR | Zbl

[4] M. M. Skriganov, “Ergodic theory on $\operatorname{SL}(n)$, Diophantine approximations and anomalies in the lattice point problem”, Invent. Math., 132:1 (1998), 1–72 | DOI | MR | Zbl

[5] O. N. German, “Diophantine exponents of lattices”, Proc. Steklov Inst. Math., 296, suppl. 2 (2017), 29–35 | DOI | DOI | MR | Zbl

[6] D. Y. Kleinbock, G. A. Margulis, “Logarithm laws for flows on homogeneous spaces”, Invent. Math., 138:3 (1999), 451–494 | DOI | MR | Zbl

[7] A. Khintchine, “Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92:1-2 (1924), 115–125 | DOI | MR | Zbl

[8] N. Technau, M. Widmer, On a counting theorem of Skriganov, arXiv: 1611.02649

[9] O. N. German, N. G. Moshchevitin, “Linear forms of a given Diophantine type”, J. Théor. Nombres Bordeaux, 22:2 (2010), 383–396 | DOI | MR | Zbl

[10] O. N. German, “Asymptotic directions for best approximations of $n$-dimensional linear forms”, Math. Notes, 75:1 (2004), 51–65 | DOI | DOI | MR | Zbl

[11] W. M. Schmidt, L. Summerer, “Parametric geometry of numbers and applications”, Acta Arith., 140:1 (2009), 67–91 | DOI | MR | Zbl

[12] W. M. Schmidt, L. Summerer, “Diophantine approximation and parametric geometry of numbers”, Monatsh. Math., 169:1 (2013), 51–104 | DOI | MR | Zbl

[13] D. Roy, “On Schmidt and Summerer parametric geometry of numbers”, Ann. of Math. (2), 182:2 (2015), 739–786 | DOI | MR | Zbl

[14] A. M. Legendre, Essai sur la théorie des nombres, Duprat, Paris, 1798, xxiv+472 pp. | MR | Zbl