Massey products, toric topology and combinatorics of polytopes
Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1081-1136

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce a direct family of simple polytopes $P^{0}\,{\subset}\, P^{1}\,{\subset}{\kern1pt}{\cdots}$ such that for any $2\,{\leq}\,k\,{\leq}\,n$ there are non-trivial strictly defined Massey products of order $k$ in the cohomology rings of their moment-angle manifolds $\mathcal Z_{P^n}$. We prove that the direct sequence of manifolds $*\subset S^{3}\hookrightarrow\dots\hookrightarrow\mathcal Z_{P^n}\hookrightarrow\mathcal Z_{P^{n+1}}\,{\hookrightarrow}\,{\cdots}$ has the following properties: every manifold $\mathcal Z_{P^n}$ is a retract of $\mathcal Z_{P^{n+1}}$, and one has inverse sequences in cohomology (over $n$ and $k$, where $k\to\infty$ as $n\to\infty$) of the Massey products constructed. As an application we get that there are non-trivial differentials $d_k$, for arbitrarily large $k$ as $n\to\infty$, in the Eilenberg–Moore spectral sequence connecting the rings $H^*(\Omega X)$ and $H^*(X)$ with coefficients in a field, where $X=\mathcal Z_{P^n}$.
Keywords: polyhedral product, moment-angle manifold, Massey product, Lusternik–Schnirelmann category, polytope family, flag polytope, generating series, nestohedron
Mots-clés : graph-associahedron.
@article{IM2_2019_83_6_a0,
     author = {V. M. Buchstaber and I. Yu. Limonchenko},
     title = {Massey products, toric topology and combinatorics of polytopes},
     journal = {Izvestiya. Mathematics },
     pages = {1081--1136},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - I. Yu. Limonchenko
TI  - Massey products, toric topology and combinatorics of polytopes
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1081
EP  - 1136
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a0/
LA  - en
ID  - IM2_2019_83_6_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A I. Yu. Limonchenko
%T Massey products, toric topology and combinatorics of polytopes
%J Izvestiya. Mathematics 
%D 2019
%P 1081-1136
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a0/
%G en
%F IM2_2019_83_6_a0
V. M. Buchstaber; I. Yu. Limonchenko. Massey products, toric topology and combinatorics of polytopes. Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1081-1136. http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a0/