The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function
Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 1066-1079.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit formula is obtained expressing the Chebyshev psi-function in terms of the discrete spectrum of the Laplace operator on the fundamental domain of the modular group.
Keywords: Selberg formula, spectrum of the Laplace operator, Chebyshev psi-function, modular group.
@article{IM2_2019_83_5_a6,
     author = {D. A. Popov},
     title = {The discrete spectrum of the {Laplace} operator on the fundamental domain of the modular group and the {Chebyshev} psi-function},
     journal = {Izvestiya. Mathematics },
     pages = {1066--1079},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a6/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1066
EP  - 1079
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a6/
LA  - en
ID  - IM2_2019_83_5_a6
ER  - 
%0 Journal Article
%A D. A. Popov
%T The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function
%J Izvestiya. Mathematics 
%D 2019
%P 1066-1079
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a6/
%G en
%F IM2_2019_83_5_a6
D. A. Popov. The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 1066-1079. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a6/

[1] A. Selberg, Harmonic analysis, 2. Teil, Vorlesung Niederschrift, Gottingen, 1954; Collected papers, v. I, Springer-Verlag, Berlin, 1989, 39, 626–674 | MR | Zbl

[2] B. S. Pavlov, L. D. Faddeev, “Scattering theory and automorphic functions”, J. Soviet Math., 3:4 (1975), 522–548 | DOI | MR | Zbl

[3] P. D. Lax, R. S. Phillips, Scattering theory for automorphic functions, Ann. of Math. Stud., 87, Princeton Univ. Press, Princeton, N.J., 1976, x+300 pp. | DOI | MR | Zbl

[4] T. Kubota, Elementary theory of Eisenstein series, Kodansha Ltd., Tokyo; Halsted Press [John Wiley Sons], New York–London–Sydney, 1973, xi+110 pp. | MR | MR | Zbl

[5] D. A. Hejhal, “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43:3 (1976), 441–482 | DOI | MR | Zbl

[6] D. A. Hejhal, The Selberg trace formula for $\operatorname{PSL}(2,\mathbb{R})$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983, viii+806 pp. | MR | Zbl

[7] A. B. Venkov, “Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics”, Russian Math. Surveys, 34:3 (1979), 79–153 | DOI | MR | Zbl

[8] A. E. Ingham, The distribution of prime numbers, Cambridge Tracts in Math. and Math. Phys., 30 \, Cambridge Univ. Press, Cambridge, 1932, vii+114 pp. | MR | Zbl

[9] P. Sarnak, “Aritmetic quantum chaos”, The Schur lectures (Tel Aviv, 1992), Israel Math. Conf. Proc., 8, Bar-Ilan Univ., PamatGan, 1995, 183–236 | MR | Zbl

[10] A. B. Venkov, “Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace–Beltrami operator on the fundamental domain of the modular group $PSL(2,\mathbf Z)$”, Math. USSR-Izv., 12:3 (1978), 448–462 | DOI | Zbl

[11] A. B. Venkov, “A formula for the Chebyshev PSI function”, Math. Notes, 23:4 (1978), 271–274 | DOI | MR | Zbl

[12] D. A. Popov, “O svyazyakh diskretnogo spektra i spektra rezonansov dlya operatora Laplasa na nekompaktnoi rimanovoi poverkhnosti”, Funkts. analiz i ego pril., 2019 (to appear)

[13] D. A. Hejhal, The Selberg trace formula for $\operatorname{PSL}(2,\mathbb{R})$, v. 1, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976, vi+516 pp. | DOI | MR | Zbl

[14] J.-P. Serre, Cours d'arithmétique, Le mathématicien, 8, Presses Universitaires de France, Paris, 1970, 188 pp. | MR | MR | Zbl | Zbl

[15] Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, eds. M. Abramowitz, I. A. Stegun, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl

[16] A. Weil, “Sur les “formules explicites” de la théorie des nombres premiers”, Comm. Sém. Math. Univ. Lund. [Medd. Lunds Univ. Mat. Sem.], 1952, Tome suppl. (1952), 252–265 | MR | Zbl