Properties of factorization operators in boundary crossing problems for random walks
Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 1050-1065.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of operators arising in the calculation of double Laplace–Stieltjes transforms of distributions in various boundary crossing problems for random walks. Such operators are defined in terms of the components of the Wiener–Hopf factorization. We give bounds for the norms of these operators and prove continuity theorems.
Keywords: random walk, boundary crossing problems, Wiener–Hopf factorization.
@article{IM2_2019_83_5_a5,
     author = {V. I. Lotov},
     title = {Properties of factorization operators in boundary crossing problems for random walks},
     journal = {Izvestiya. Mathematics },
     pages = {1050--1065},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a5/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - Properties of factorization operators in boundary crossing problems for random walks
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1050
EP  - 1065
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a5/
LA  - en
ID  - IM2_2019_83_5_a5
ER  - 
%0 Journal Article
%A V. I. Lotov
%T Properties of factorization operators in boundary crossing problems for random walks
%J Izvestiya. Mathematics 
%D 2019
%P 1050-1065
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a5/
%G en
%F IM2_2019_83_5_a5
V. I. Lotov. Properties of factorization operators in boundary crossing problems for random walks. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 1050-1065. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a5/

[1] V. I. Lotov, “Ob odnom podkhode v dvugranichnykh zadachakh”, Statistika i upravlenie sluchainymi protsessami, Nauka, M., 1989, 117–121 | MR | Zbl

[2] V. I. Lotov, “On oscillating random walks”, Siberian Math. J., 37:4 (1996), 764–774 | DOI | MR | Zbl

[3] V. I. Lotov, “Asymptotic analysis of the distributions in problems with two boundaries. I”, Theory Probab. Appl., 24:3 (1980), 480–491 | DOI | MR | Zbl

[4] V. I. Lotov, “Asymptotic analysis of distributions in problems with two boundaries. II”, Theory Probab. Appl., 24:4 (1980), 869–876 | DOI | MR | Zbl

[5] V. I. Lotov, “On the asymptotics of distributions connected with the exit of a non-discrete random walk from an interval”, Advances in probability theory: limit theorems and related problems, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publ. Div., New York, 1984, 29–41 | MR | MR | Zbl | Zbl

[6] A. A. Borovkov, Probability theory, Universitext, Springer, London, 2013, xxviii+733 pp. | DOI | MR | MR | Zbl | Zbl

[7] A. A. Borovkov, Stochastic processes in queueing theory, Appl. Math., 4, Springer-Verlag, New York–Berlin, 1976, xi+280 pp. | DOI | MR | MR | Zbl | Zbl

[8] V. I. Lotov, “On some boundary crossing problems for Gaussian random walks”, Ann. Probab., 24:4 (1996), 2154–2171 | DOI | MR | Zbl

[9] V. I. Lotov, E. M. Okhapkina, “Stationary distribution of a stochastic process”, J. Math. Sci. (N.Y.), 231:2 (2018), 218–226 | DOI | DOI | MR | Zbl

[10] A. A. Borovkov, “New limit theorems in boundary problems for sums of independent terms”, Select. Transl. Math. Stat. Probab., 5, Amer. Math. Soc., Providence, RI, 1965, 315–372 | MR | MR | Zbl | Zbl

[11] J. H. B. Kemperman, “A Wiener–Hopf type method for a general random walk with a two-sided boundary”, Ann. Math. Statist., 34:4 (1963), 1168–1193 | DOI | MR | Zbl

[12] V. I. Lotov, “Ob asimptotike raspredeleniya velichiny pereskoka”, Sib. elektron. matem. izv., 12 (2015), 292–299 | DOI | MR | Zbl

[13] W. Feller, An introduction to probability theory and its applications, v. 1, 2, John Wiley Sons, Inc., New York–London–Sydney, 1968, 1971, xviii+509 pp., xxiv+669 pp. | MR | MR | MR | MR | Zbl | Zbl

[14] A. A. Mogul'skii, “Absolute estimates for moments of certain boundary functionals”, Theory Probab. Appl., 18:2 (1974), 340–347 | DOI | MR | Zbl

[15] I. S. Borisov, A. M. Shoisoronov, “A continuity theorem in the ruin problem”, Siberian Math. J., 52:4 (2011), 602–611 | DOI | MR | Zbl

[16] A. A. Borovkov, “Stability theorems and the second-order asymptotics in threshold phenomena for boundary functionals of random walks”, Siberian Adv. Math., 26:4 (2016), 231–246 | DOI | DOI | MR | Zbl