Distribution of rational points on the circle of unit radius
Izvestiya. Mathematics, Tome 83 (2019) no. 5, pp. 1008-1049 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain an expression for the density of the distribution of the lengths of arcs connecting neighbouring rational points on the unit circle with denominators not exceeding a given bound.
Keywords: Farey fractions, Pythagorean triples, unit circle, density of a distribution.
@article{IM2_2019_83_5_a4,
     author = {M. A. Korolev and A. V. Ustinov},
     title = {Distribution of rational points on the circle of unit radius},
     journal = {Izvestiya. Mathematics},
     pages = {1008--1049},
     year = {2019},
     volume = {83},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a4/}
}
TY  - JOUR
AU  - M. A. Korolev
AU  - A. V. Ustinov
TI  - Distribution of rational points on the circle of unit radius
JO  - Izvestiya. Mathematics
PY  - 2019
SP  - 1008
EP  - 1049
VL  - 83
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a4/
LA  - en
ID  - IM2_2019_83_5_a4
ER  - 
%0 Journal Article
%A M. A. Korolev
%A A. V. Ustinov
%T Distribution of rational points on the circle of unit radius
%J Izvestiya. Mathematics
%D 2019
%P 1008-1049
%V 83
%N 5
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a4/
%G en
%F IM2_2019_83_5_a4
M. A. Korolev; A. V. Ustinov. Distribution of rational points on the circle of unit radius. Izvestiya. Mathematics, Tome 83 (2019) no. 5, pp. 1008-1049. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a4/

[1] L. E. Dickson, History of the theory of numbers, v. 2, Diophantine analysis, Chelsea Publishing Co., New York, 1966, xxv+803 pp. | MR | Zbl

[2] B. L. van der Varden, Probuzhdayuschayasya nauka. Matematika Drevnego Egipta, Vavilona i Gretsii, GIFML, M., 1959, 460 pp.; B. L. van der Waerden, Ontwakende Wetenschap. Egyptische, Babylonische en Griekse Wiskunde, Historische Bibliothek für exakte Wissenschaft, VII, P. Noordhoff, Groningen, 1950, 332 СЃ. ; B. L. van der Waerden, Science awakening. Egyptian, Babylonian and Greek mathematics, P. Noordhoff, Groningen, 1954, 360 СЃ. | MR | Zbl | Zbl

[3] F. P. Boca, C. Cobeli, A. Zaharescu, “Distribution of lattice points visible from the origin”, Comm. Math. Phys., 213:2 (2000), 433–470 | DOI | MR | Zbl

[4] A. V. Ustinov, “On the number of solutions of the congruence $xy\equiv l\ (\operatorname{mod}q)$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20:5 (2009), 813–836 | DOI | MR | Zbl

[5] A. V. Ustinov, “O raspredelenii tochek tselochislennoi reshetki”, Dalnevost. matem. zhurn., 9:1-2 (2009), 176–181 | MR

[6] F. P. Boca, R. N. Gologan, A. Zaharescu, “The statistics of the trajectory of a certain billiard in a flat two-torus”, Comm. Math. Phys., 240:1-2 (2003), 53–73 | DOI | MR | Zbl

[7] V. A. Bykovskii, A. V. Ustinov, “The statistics of particle trajectories in the homogeneous Sinai problem for a two-dimensional lattice”, Funct. Anal. Appl., 42:3 (2008), 169–179 | DOI | DOI | MR | Zbl

[8] V. A. Bykovskii, A. V. Ustinov, “The statistics of particle trajectories in the inhomogeneous Sinai problem for a two-dimensional lattice”, Izv. Math., 73:4 (2009), 669–688 | DOI | DOI | MR | Zbl

[9] G. Vorono\"i, “Sur un problème du calcul des fonctions asymptotiques”, J. Reine Angew. Math., 126 (1903), 241–282 | DOI | MR | MR | Zbl | Zbl

[10] S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, London Math. Soc. Lecture Note Ser., 126, Cambridge Univ. Press, Cambridge, 1991, vi+120 pp. | DOI | MR | Zbl