Distribution of rational points on the circle of unit radius
Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 1008-1049.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an expression for the density of the distribution of the lengths of arcs connecting neighbouring rational points on the unit circle with denominators not exceeding a given bound.
Keywords: Farey fractions, Pythagorean triples, unit circle, density of a distribution.
@article{IM2_2019_83_5_a4,
     author = {M. A. Korolev and A. V. Ustinov},
     title = {Distribution of rational points on the circle of unit radius},
     journal = {Izvestiya. Mathematics },
     pages = {1008--1049},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a4/}
}
TY  - JOUR
AU  - M. A. Korolev
AU  - A. V. Ustinov
TI  - Distribution of rational points on the circle of unit radius
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1008
EP  - 1049
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a4/
LA  - en
ID  - IM2_2019_83_5_a4
ER  - 
%0 Journal Article
%A M. A. Korolev
%A A. V. Ustinov
%T Distribution of rational points on the circle of unit radius
%J Izvestiya. Mathematics 
%D 2019
%P 1008-1049
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a4/
%G en
%F IM2_2019_83_5_a4
M. A. Korolev; A. V. Ustinov. Distribution of rational points on the circle of unit radius. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 1008-1049. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a4/

[1] L. E. Dickson, History of the theory of numbers, v. 2, Diophantine analysis, Chelsea Publishing Co., New York, 1966, xxv+803 pp. | MR | Zbl

[2] B. L. van der Varden, Probuzhdayuschayasya nauka. Matematika Drevnego Egipta, Vavilona i Gretsii, GIFML, M., 1959, 460 pp.; B. L. van der Waerden, Ontwakende Wetenschap. Egyptische, Babylonische en Griekse Wiskunde, Historische Bibliothek für exakte Wissenschaft, VII, P. Noordhoff, Groningen, 1950, 332 с. ; B. L. van der Waerden, Science awakening. Egyptian, Babylonian and Greek mathematics, P. Noordhoff, Groningen, 1954, 360 с. | MR | Zbl | Zbl

[3] F. P. Boca, C. Cobeli, A. Zaharescu, “Distribution of lattice points visible from the origin”, Comm. Math. Phys., 213:2 (2000), 433–470 | DOI | MR | Zbl

[4] A. V. Ustinov, “On the number of solutions of the congruence $xy\equiv l\ (\operatorname{mod}q)$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20:5 (2009), 813–836 | DOI | MR | Zbl

[5] A. V. Ustinov, “O raspredelenii tochek tselochislennoi reshetki”, Dalnevost. matem. zhurn., 9:1-2 (2009), 176–181 | MR

[6] F. P. Boca, R. N. Gologan, A. Zaharescu, “The statistics of the trajectory of a certain billiard in a flat two-torus”, Comm. Math. Phys., 240:1-2 (2003), 53–73 | DOI | MR | Zbl

[7] V. A. Bykovskii, A. V. Ustinov, “The statistics of particle trajectories in the homogeneous Sinai problem for a two-dimensional lattice”, Funct. Anal. Appl., 42:3 (2008), 169–179 | DOI | DOI | MR | Zbl

[8] V. A. Bykovskii, A. V. Ustinov, “The statistics of particle trajectories in the inhomogeneous Sinai problem for a two-dimensional lattice”, Izv. Math., 73:4 (2009), 669–688 | DOI | DOI | MR | Zbl

[9] G. Vorono\"i, “Sur un problème du calcul des fonctions asymptotiques”, J. Reine Angew. Math., 126 (1903), 241–282 | DOI | MR | MR | Zbl | Zbl

[10] S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, London Math. Soc. Lecture Note Ser., 126, Cambridge Univ. Press, Cambridge, 1991, vi+120 pp. | DOI | MR | Zbl