Three plots about Cremona groups
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 830-859.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first group of results of the paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, of the Cremona groups in other groups. The third concerns the connectedness of the Cremona groups.
Keywords: Cremona group, compressibility, Jordan property, connectedness.
@article{IM2_2019_83_4_a8,
     author = {V. L. Popov},
     title = {Three plots about {Cremona} groups},
     journal = {Izvestiya. Mathematics },
     pages = {830--859},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a8/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Three plots about Cremona groups
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 830
EP  - 859
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a8/
LA  - en
ID  - IM2_2019_83_4_a8
ER  - 
%0 Journal Article
%A V. L. Popov
%T Three plots about Cremona groups
%J Izvestiya. Mathematics 
%D 2019
%P 830-859
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a8/
%G en
%F IM2_2019_83_4_a8
V. L. Popov. Three plots about Cremona groups. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 830-859. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a8/

[1] J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis”, Séminaire Bourbaki, Exposés 997–1011, v. 2008/2009, Astérisque, 332, Soc. Math. France, Paris, 2010, vii, 75–100, Exp. No. 1000 | MR | Zbl

[2] J. Blanc, J.-P. Furter, “Topologies and structures of the Cremona groups”, Ann. of Math. (2), 178:3 (2013), 1173–1198 | DOI | MR | Zbl

[3] V. L. Popov, “Some subgroups of the Cremona groups”, Affine algebraic geometry (Osaka, 2011), World Sci. Publ., Hackensack, NJ, 2013, 213–242 | DOI | MR | Zbl

[4] V. L. Popov, “Tori in the Cremona groups”, Izv. Math., 77:4 (2013), 742–771 | DOI | DOI | MR | Zbl

[5] V. L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2 (2014), 549–568 | DOI | MR | Zbl

[6] V. L. Popov, “Borel subgroups of Cremona groups”, Math. Notes, 102:1 (2017), 60–67 | DOI | DOI | MR | Zbl

[7] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548 | DOI | MR | Zbl

[8] V. L. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in birational and affine geometry (Levico Terme, 2012), Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 185–213 | DOI | MR | Zbl

[9] V. L. Popov, Cremona conference–Basel 2016, Question session, 2016 https://algebra.dmi.unibas.ch/blanc/cremonaconference/index.html

[10] J.-P. Serre, “A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field”, Mosc. Math. J., 9:1 (2009), 183–198 | MR | Zbl

[11] Yu. Prokhorov, C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418 | DOI | MR | Zbl

[12] C. Birkar, Birational geometry of algebraic varieties, 2018, arXiv: 1801.00013

[13] S. Cantat, “Morphisms between Cremona groups, and characterization of rational varieties”, Compositio Math., 150:7 (2014), 1107–1124 | DOI | MR | Zbl

[14] J. Blanc, S. Zimmermann, “Topological simplicity of the Cremona groups”, Amer. J. Math., 140:5 (2018), 1297–1309 ; (2015), arXiv: 1511.08907 | DOI | MR | Zbl

[15] J. Blanc, “Groupes de Cremona, connexité et simplicité”, Ann. Sci. Éc. Norm. Supér. (4), 43:2 (2010), 357–364 | DOI | MR | Zbl

[16] J. W. Alexander, “On the deformation of an $n$-cell”, Proc. Nat. Acad. Sci. USA, 9:12 (1923), 406–407 | DOI | Zbl

[17] I. R. Shafarevich, “On some infinite-dimensional groups. II”, Math. USSR-Izv., 18:1 (1982), 185–194 | DOI | MR | Zbl

[18] M. Rosenlicht, “Some basic theorems on algebraic groups”, Amer. J. Math., 78:2 (1956), 401–443 | DOI | MR | Zbl

[19] E. Bierstone, P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302 | DOI | MR | Zbl

[20] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic geometry IV, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | DOI | MR | MR | Zbl | Zbl

[21] Z. Reichstein, “On the notion of essential dimension for algebraic groups”, Transform. Groups, 5:3 (2000), 265–304 | DOI | MR | Zbl

[22] Z. Reichstein, “Compressions of group actions”, Invariant theory in all characteristics, CRM Proc. Lecture Notes, 35, Amer. Math. Soc., Providence, RI, 2004, 199–202 | DOI | MR | Zbl

[23] M. Garcia-Armas, “Strongly incompressible curves”, Canad. J. Math., 68:3 (2016), 541–570 | DOI | MR | Zbl

[24] I. R. Shafarevich, Basic algebraic geometry, v. 1, Varieties in projective space, 3rd ed., Springer, Heidelberg, 2013, xviii+310 pp. ; v. 2, Schemes and complex manifolds, 3rd ed., 2013, xiv+262 pp. | DOI | DOI | MR | MR | MR | Zbl | Zbl | Zbl

[25] B. L. van der Varden, Algebra, 2-e izd., Nauka, M., 1979, 624 pp. ; B. L. van der Waerden, Algebra, v. I, Heidelberger Taschenbücher, 12, 8. Aufl., Springer-Verlag, Berlin–New York, 1971, ix+272 pp. ; v. II, Heidelberger Taschenbücher, 23, 5. Aufl., 1967, x+300 pp. ; B. L. van der Waerden, Algebra, Reprint. from the English transl. of 1970, т. 1, 2, Springer-Verlag, New York, 1991, xiv+265 pp., xii+284 с. | MR | Zbl | MR | Zbl | MR | Zbl | MR | MR | Zbl

[26] T. A. Springer, “Poincaré series of binary polyhedral groups and McKay's correspondence”, Math. Ann., 278:1-4 (1987), 99–116 | DOI | MR | Zbl

[27] N. Lemire, V. L. Popov, Z. Reichstein, “Cayley groups”, J. Amer. Math. Soc., 19:4 (2006), 921–967 | DOI | MR | Zbl

[28] I. Dolgachev, A. Duncan, “Fixed points of a finite subgroup of the plane Cremona group”, Algebr. Geom., 3:4 (2016), 441–460 | DOI | MR | Zbl

[29] K. A. Nguyen, M. van der Put, J. Top, “Algebraic subgroups of $\operatorname{GL}_2(\mathbb C)$”, Indag. Math. (N.S.), 19:2 (2008), 287–297 | DOI | MR | Zbl

[30] J. Blanc, Finite Abelian subgroups of the Cremona group of the plane, Ph.D. thèse No. 3777, Univ. Genève, Genève, 2006, 186 pp., arXiv: math/0610368

[31] S. Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965, xvii+508 pp. | MR | Zbl | Zbl

[32] J. Buhler, Z. Reichstein, “On the essential dimension of a finite group”, Compositio Math., 106:2 (1997), 159–179 | DOI | MR | Zbl

[33] Z. Reichstein, B. Youssin, “Essential dimensions of algebraic groups and a resolution theorem for $G$-varieties”, Canad. J. Math., 52:5 (2000), 1018–1056 | DOI | MR | Zbl

[34] E. B. Vinberg, Linear representations of groups, Basler Lehrbücher, 2, Birkhäuser Verlag, Basel, 1989, iv+146 pp. | DOI | MR | MR | Zbl | Zbl

[35] V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, The Russell festschrift, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311 | DOI | MR | Zbl

[36] Yu. Prokhorov, C. Shramov, “Jordan constant for Cremona group of rank $3$”, Mosc. Math. J., 17:3 (2017), 457–509 | MR

[37] Ch. Urech, Letter of October 11, 2018 to V. L. Popov, 2018

[38] J. Blanc, S. Lamy, S. Zimmermann, Quotients of higher dimensional Cremona groups, 2019, 84 pp., arXiv: 1901.04145v2

[39] J. Déserti, “Le groupe de Cremona est hopfien”, C. R. Math. Acad. Sci. Paris, 344:3 (2007), 153–156 | DOI | MR | Zbl

[40] L. N. Mann, J. C. Su, “Actions of elementary $p$-groups on manifolds”, Trans. Amer. Math. Soc., 106 (1963), 115–126 | DOI | MR | Zbl

[41] A. Borisov, Letters of May $1$ and $2$, 2017 to V. L. Popov, 2017