On the variety of the inflection points of plane cubic curves
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 770-795
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study properties of the nine-dimensional variety
of the inflection points of plane cubics. We describe the local
monodromy groups of the set of inflection points near singular cubic curves
and give a detailed description of the normalizations of the surfaces of the
inflection points of plane cubic curves belonging to general two-dimensional
linear systems of cubics. We also prove the vanishing of the irregularity
of a smooth manifold birationally isomorphic to the variety of the inflection
points of plane cubics.
Keywords:
plane cubic curves, inflection points
Mots-clés : monodromy.
Mots-clés : monodromy.
@article{IM2_2019_83_4_a6,
author = {Vik. S. Kulikov},
title = {On the variety of the inflection points of plane cubic curves},
journal = {Izvestiya. Mathematics },
pages = {770--795},
publisher = {mathdoc},
volume = {83},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a6/}
}
Vik. S. Kulikov. On the variety of the inflection points of plane cubic curves. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 770-795. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a6/