Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 232-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider uniformly weighted spaces of analytic functions on a bounded convex domain in the complex plane with convex weights. For every uniformly weighted normed space $H(D,\varphi)$ we define a special inductive limit $\mathcal H_i(D,\varphi)$ of normed spaces and a special projective limit $\mathcal H_p(D,\varphi)$ of normed spaces. We prove that $\mathcal H_i(D,\varphi)$ is the smallest locally convex space which contains $H(D,\varphi)$ and is invariant under differentiation, and $\mathcal H_p(D,\varphi)$ is the largest such space which is contained in $H(D,\varphi)$. We construct a representing system of exponentials in the projective limit $\mathcal H_p(D, \varphi)$ and estimate the redundancy of this system.
Keywords: analytic functions, weighted spaces, locally convex spaces, sufficient sets, representing systems of exponentials.
@article{IM2_2019_83_2_a3,
     author = {K. P. Isaev and K. V. Trounov and R. S. Yulmukhametov},
     title = {Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$},
     journal = {Izvestiya. Mathematics },
     pages = {232--250},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a3/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - K. V. Trounov
AU  - R. S. Yulmukhametov
TI  - Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 232
EP  - 250
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a3/
LA  - en
ID  - IM2_2019_83_2_a3
ER  - 
%0 Journal Article
%A K. P. Isaev
%A K. V. Trounov
%A R. S. Yulmukhametov
%T Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$
%J Izvestiya. Mathematics 
%D 2019
%P 232-250
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a3/
%G en
%F IM2_2019_83_2_a3
K. P. Isaev; K. V. Trounov; R. S. Yulmukhametov. Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 232-250. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a3/

[1] A. F. Leontev, Ryady eksponent, Nauka, M., 1976, 536 pp. | MR | Zbl

[2] B. Ya. Levin, Yu. I. Lyubarskii, “Interpolation by means of special classes of entire functions and related expansions in series of exponentials”, Math. USSR-Izv., 9:3 (1975), 621–662 | DOI | MR | Zbl

[3] Yu. I. Lyubarskii, “Exponential series in Smirnov spaces and interpolation by entire functions of special classes”, Math. USSR-Izv., 32:3 (1989), 563–586 | DOI | MR | Zbl

[4] K. P. Isaev, “Bazisy Rissa iz eksponent v prostranstvakh Bergmana na vypuklykh mnogougolnikakh”, Ufimsk. matem. zhurn., 2:1 (2010), 71–86 | Zbl

[5] K. P. Isaev, R. S. Yulmukhametov, “The absence of unconditional bases of exponentials in Bergman spaces on non-polygonal domains”, Izv. Math., 71:6 (2007), 1145–1166 | DOI | DOI | MR | Zbl

[6] K. P. Isaev, R. S. Yulmukhametov, “Unconditional bases of reproducing kernels in Hilbert spaces of entire functions”, Ufa Math. J., 5:3 (2013), 67–76 | DOI | MR

[7] Yu. F. Korobeinik, “Representing systems”, Russian Math. Surveys, 36:1 (1981), 75–137 | DOI | MR | Zbl

[8] V. V. Napalkov, “Spaces of analytic functions of prescribed growth near the boundary”, Math. USSR-Izv., 30:2 (1988), 263–281 | DOI | MR | Zbl

[9] R. S. Yulmukhametov, “Space of analytic functions with prescribed growth near the boundary”, Math. Notes, 32:1 (1982), 499–508 | DOI | MR | Zbl

[10] A. V. Abanin, Yu. S. Nalbandjan, “Absolutely representative exponent systems of minimal type in function spaces with given growth near the boundary”, Russian Math. (Iz. VUZ), 37:10 (1993), 72–75 | MR | Zbl

[11] A. V. Abanin, V. A. Varziev, “Sufficient sets in weighted Fréchet spaces of entire functions”, Siberian Math. J., 54:4 (2013), 575–587 | DOI | MR | Zbl

[12] R. A. Bashmakov, K. P. Isaev, R. S. Yulmukhametov, “Predstavlyayuschie sistemy eksponent v vesovykh podprostranstvakh $H(D)$”, Kompleksnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 153, VINITI RAN, M., 2018, 13–28

[13] V. V. Napalkov, “On comparison of topologies in certain spaces of entire functions”, Soviet Math. Dokl., 25 (1982), 755–758 | MR | Zbl

[14] L. Ehrenpreis, Fourier analysis in several complex variables, Pure Appl. Math., 17, Wiley-Intersci. Publ. John Wiley Sons, New York–London–Sydney, 1970, xiii+506 pp. | MR | Zbl

[15] K. P. Isaev, K. V. Trounov, R. S. Yulmukhametov, “Representation of functions in locally convex subspaces of $A^\infty (D)$ by series of exponentials”, Ufa Math. J., 9:3 (2017), 48–60 | DOI | MR

[16] K. P. Isaev, A. V. Lutsenko, R. S. Yulmukhametov, “Bezuslovnye bazisy v slabovesovykh prostranstvakh tselykh funktsii”, Algebra i analiz, 30:2 (2018), 145–162