On the existence of a~linear differential system with given values of the Perron exponent
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 214-231
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider linear differential systems with infinitely differentiable
and, in general, unbounded coefficients on the semi-axis.
We prove that the map assigning to a non-zero solution
of such a system the value of the Perron exponent on the
solution can turn out to be an arbitrary continuous
function which is constant along every line passing through zero
in the solution space.
Keywords:
differential equation, linear system, Lyapunov exponents, Perron exponents.
@article{IM2_2019_83_2_a2,
author = {A. Gargyants},
title = {On the existence of a~linear differential system with given values of the {Perron} exponent},
journal = {Izvestiya. Mathematics },
pages = {214--231},
publisher = {mathdoc},
volume = {83},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a2/}
}
A. Gargyants. On the existence of a~linear differential system with given values of the Perron exponent. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 214-231. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a2/