On the existence of a~linear differential system with given values of the Perron exponent
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 214-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider linear differential systems with infinitely differentiable and, in general, unbounded coefficients on the semi-axis. We prove that the map assigning to a non-zero solution of such a system the value of the Perron exponent on the solution can turn out to be an arbitrary continuous function which is constant along every line passing through zero in the solution space.
Keywords: differential equation, linear system, Lyapunov exponents, Perron exponents.
@article{IM2_2019_83_2_a2,
     author = {A. Gargyants},
     title = {On the existence of a~linear differential system with given values of the {Perron} exponent},
     journal = {Izvestiya. Mathematics },
     pages = {214--231},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a2/}
}
TY  - JOUR
AU  - A. Gargyants
TI  - On the existence of a~linear differential system with given values of the Perron exponent
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 214
EP  - 231
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a2/
LA  - en
ID  - IM2_2019_83_2_a2
ER  - 
%0 Journal Article
%A A. Gargyants
%T On the existence of a~linear differential system with given values of the Perron exponent
%J Izvestiya. Mathematics 
%D 2019
%P 214-231
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a2/
%G en
%F IM2_2019_83_2_a2
A. Gargyants. On the existence of a~linear differential system with given values of the Perron exponent. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 214-231. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a2/

[1] N. A. Izobov, Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006, 319 pp.

[2] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966, 576 pp. | MR | Zbl

[3] E. A. Barabanov, “Structure of the set of lower Perron indices of a linear differential system”, Differential Equations, 22:11 (1986), 1261–1270 | MR | Zbl

[4] N. A. Izobov, “O mere mnozhestva reshenii lineinoi sistemy s naibolshim nizhnim pokazatelem”, Differents. uravneniya, 24:12 (1988), 2168–2170 | MR | Zbl

[5] A. G. Gargyants, “K voprosu o tipichnosti i suschestvennosti znachenii pokazatelya Perrona neogranichennykh lineinykh sistem”, Differents. uravneniya, 49:11 (2013), 1505–1506

[6] V. V. Bykov, “Baire classes of Lyapunov invariants”, Sb. Math., 208:5 (2017), 620–643 | DOI | DOI | MR | Zbl

[7] S. A. Mazanik, Preobrazovaniya Lyapunova lineinykh differentsialnykh sistem, BGU, Minsk, 2008, 175 pp.