IInvestigation of the sets of real solutions of non-linear equations
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 199-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of constructing a smooth curve lying on the level set of a smooth map and issuing from an abnormal point. We find sufficient conditions for the existence of such curves and obtain bounds for the distances to level sets of the smooth map near an abnormal point.
Keywords: abnormal point, smooth curve, quadratic map, regular zero of a quadratic map, bound for the distance to a level set.
@article{IM2_2019_83_2_a1,
     author = {A. V. Arutyunov},
     title = {IInvestigation of the sets of real solutions of non-linear equations},
     journal = {Izvestiya. Mathematics },
     pages = {199--213},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a1/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - IInvestigation of the sets of real solutions of non-linear equations
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 199
EP  - 213
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a1/
LA  - en
ID  - IM2_2019_83_2_a1
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T IInvestigation of the sets of real solutions of non-linear equations
%J Izvestiya. Mathematics 
%D 2019
%P 199-213
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a1/
%G en
%F IM2_2019_83_2_a1
A. V. Arutyunov. IInvestigation of the sets of real solutions of non-linear equations. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 199-213. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a1/

[1] V. V. Kozlov, “On real solutions of systems of equations”, Funct. Anal. Appl., 51:4 (2017), 306–309 | DOI | DOI | MR | Zbl

[2] A. V. Arutyunov, Optimality conditions. Abnormal and degenerate problems, Math. Appl., 526, Kluwer Acad. Publ., Dordrecht, 2000, x+299 pp. | MR | MR | Zbl | Zbl

[3] A. V. Arutyunov, “Second-order conditions in extremal problems. The abnormal points”, Trans. Amer. Math. Soc., 350:11 (1998), 4341–4365 | DOI | MR | Zbl

[4] E. R. Avakov, “Extremum conditions for smooth problems with equality-type constraints”, U.S.S.R. Comput. Math. Math. Phys., 25:3 (1985), 24–32 | DOI | MR | Zbl

[5] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland Publishing Co., Amsterdam–New York, 1979, xii+460 pp. | MR | MR | Zbl | Zbl

[6] A. V. Arutyunov, D. Yu. Karamzin, “Regular zeros of quadratic maps and their application”, Sb. Math., 202:6 (2011), 783–806 | DOI | DOI | MR | Zbl

[7] A. A. Agrachev, A. V. Sarychev, “Abnormal sub-Riemannian geodesics: Morse index and rigidity”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13:6 (1996), 635–690 | DOI | MR | Zbl

[8] A. V. Arutyunov, “Some properties of quadratic mappings”, Moscow Univ. Comput. Math. Cybernet., 1999:2, 24–28 | MR | Zbl

[9] E. R. Avakov, “Theorems on estimates in the neighborhood of a singular point of a mapping”, Math. Notes, 47:5 (1990), 425–432 | DOI | MR | Zbl

[10] A. F. Izmailov, M. V. Solodov, “Error bounds for $2$-regular mappings with Lipschitzian derivatives and their applications”, Math. Program., 89:3, Ser. A (2001), 413–435 | DOI | MR | Zbl

[11] A. F. Izmailov, M. V. Solodov, “The theory of $2$-regularity for mappings with Lipschitzian derivatives and its applications to optimality conditions”, Math. Oper. Res., 27:3 (2002), 614–635 | DOI | MR | Zbl

[12] B. Malgrange, Ideals of differentiable functions, Tata Inst. Fund. Res. Stud. Math., 3, Tata Inst. Fund. Res., Bombay; Oxford Univ. Press, London, 1967, vii+106 pp. | MR | Zbl | Zbl

[13] L. L. Dines, “On the mapping of quadratic forms”, Bull. Amer. Math. Soc., 47:6 (1941), 494–498 | DOI | MR | Zbl

[14] A. V. Arutyunov, S. E. Zhukovskiy, “Properties of surjective real quadratic maps”, Sb. Math., 207:9 (2016), 1187–1214 | DOI | DOI | MR | Zbl