Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_1_a3, author = {V. A. Krasnov}, title = {Real {Kummer} surfaces}, journal = {Izvestiya. Mathematics }, pages = {65--103}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a3/} }
V. A. Krasnov. Real Kummer surfaces. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 65-103. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a3/
[1] V. V. Nikulin, “On Kummer surfaces”, Math. USSR-Izv., 9:2 (1975), 261–275 | DOI | MR | Zbl
[2] V. A. Krasnov, “On real quadric line complexes”, Izv. Math., 74:6 (2010), 1255–1276 | DOI | DOI | MR | Zbl
[3] S. Endraß, Kummer surfaces http://www2.mathematik.uni-mainz.de/alggeom/docs/Ekummer.shtml
[4] I. I. Pjateckiĭ-Šapiro, I. R. Šafarevič, “A Torelli theorem for algebraic surfaces of type $K3$”, Math. USSR-Izv., 5:3 (1971), 547–588 | DOI | MR | Zbl
[5] V. V. Nikulin, “An analogue of the Torelli theorem for Kummer surfaces of Jacobians”, Math. USSR-Izv., 8:1 (1974), 21–41 | DOI | MR | Zbl
[6] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl
[7] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp. | DOI | MR | Zbl
[8] M. R. Gonzalez-Dorrego, (16,6) configurations and geometry of Kummer surfaces in $\mathbf{P}^3$, Mem. Amer. Math. Soc., 107, no. 512, Amer. Math. Soc., Providence, RI, 1994, vi+101 pp. | DOI | MR | Zbl
[9] J. W. S. Cassels, E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc. Lecture Note Ser., 230, Cambridge Univ. Press, Cambridge, 1996, xiv+219 pp. | DOI | MR | Zbl
[10] S. M. Natanzon, Moduli of Riemann surfaces, real algebraic curves, and their superanalogs, Transl. Math. Monogr., 225, Amer. Math. Soc., Providence, RI, 2004, viii+160 pp. | MR | MR | Zbl | Zbl
[11] V. A. Krasnov, “Rigid isotopy classification of real quadric line complexes and associated Kummer surfaces”, Math. Notes, 89:5 (2011), 661–671 | DOI | DOI | MR | Zbl
[12] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl
[13] R. W. H. T. Hudson, Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, xi+219 pp. | MR | Zbl
[14] K. Rohn, “Die verschiedenen Gestalten der Kummer'schen Fläche”, Math. Ann., 18 (1881), 99–159 | DOI | MR | Zbl
[15] F. Klein, “Zur Theorie der Liniencomplexe des ersten und zweiten Grades”, Math. Ann., 2:2 (1870), 198–226 | DOI | MR | Zbl
[16] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR-Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl
[17] V. V. Nikulin, “On the connected components of moduli of real polarized $\mathrm{K}3$-surfaces”, Izv. Math., 72:1 (2008), 91–111 | DOI | DOI | MR | Zbl
[18] V. V. Nikulin, “Involutions of integral quadratic forms and their applications to real algebraic geometry”, Math. USSR-Izv., 22:1 (1984), 99–172 | DOI | MR | Zbl
[19] V. A. Krasnov, “Albanese mapping for real algebraic varieites”, Math. Notes, 32:3 (1982), 661–666 | DOI | MR | Zbl
[20] V. A. Krasnov, “Albanese map for $\mathrm{GMZ}$-varieties”, Math. Notes, 35:5 (1984), 391–396 | DOI | MR | Zbl
[21] A. Comessatti, “Sulle varietà abeliane reali”, Ann. Mat. Pura Appl., 2:1 (1925), 67–106 | DOI | MR | Zbl
[22] R. Silhol, Real algebraic surfaces, Lecture Notes in Math., 1392, Springer-Verlag, Berlin, 1989, x+215 pp. | DOI | MR | Zbl
[23] M. F. Atiyah, “$K$-theory and reality”, Quart. J. Math. Oxford Ser. (2), 17 (1966), 367–386 | DOI | MR | Zbl
[24] M. Karoubi, $K$-theory. An introduction, Grundlehren Math. Wiss., 226, Springer-Verlag, Berlin–New York, 1978, xviii+308 pp. | MR | MR | Zbl | Zbl
[25] A. Grothendieck, “Sur quelques points d'algèbre homologique”, Tôhoku Math. J. (2), 9:2 (1957), 119–221 | DOI | MR | Zbl
[26] V. A. Krasnov, “Characteristic classes of vector bundles on a real algebraic variety”, Math. USSR-Izv., 39:1 (1992), 703–730 | DOI | MR | Zbl
[27] V. A. Krasnov, “Real algebraic varieties without real points”, Izv. Math., 63:4 (1999), 757–790 | DOI | DOI | MR | Zbl
[28] I. Dolgachev, “Integral quadratic forms: applications to algebraic geometry”, Séminaire N. Bourbaki, v. 1982/1983, Astérisque, 105-106, Soc. Math. France, Paris, 1983, 251–278 | MR | Zbl
[29] D. Mumford, Abelian varieties, Tata Inst. Fund. Res. Stud. Math., 5, Oxford Univ. Press, London, 1970, viii+242 pp. | MR | Zbl | Zbl
[30] C. M. Jessop, A treatise on line complex, Cambridge Univ. Press, Cambridge, 1903, xv+362 pp. | MR | Zbl
[31] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl
[32] W. Barth, I. Nieto, “Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines”, J. Algebraic Geom., 3:2 (1994), 173–222 | MR | Zbl