Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_6_a5, author = {Ya. Tan and L. Liu}, title = {Boundedness of {Toeplitz} operators related to singular integral operators}, journal = {Izvestiya. Mathematics }, pages = {1225--1238}, publisher = {mathdoc}, volume = {82}, number = {6}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a5/} }
Ya. Tan; L. Liu. Boundedness of Toeplitz operators related to singular integral operators. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1225-1238. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a5/
[1] R. R. Coifman, R. Rochberg, G. Weiss, “Factorization theorems for Hardy spaces in several variables”, Ann. of Math. (2), 103:3 (1976), 611–635 | DOI | MR | Zbl
[2] S. Janson, “Mean oscillation and commutators of singular integral operators”, Ark. Math., 16:1-2 (1978), 263–270 | DOI | MR | Zbl
[3] M. Paluszynski, “Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss”, Indiana Univ. Math. J., 44:1 (1995), 1–17 | DOI | MR | Zbl
[4] G. Di Fazio, M. A. Ragusa, “Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients”, J. Funct. Anal., 112:2 (1993), 241–256 | DOI | MR | Zbl
[5] D. K. Palagachev, L. G. Softova, “Singular integral operators, Morrey spaces and fine regularity of solutions to PDE's”, Potential Anal., 20:3 (2004), 237–263 | DOI | MR | Zbl
[6] J. García-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, North-Holland Publishing Co., Amsterdam, 1985, x+604 pp. | MR | Zbl
[7] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Monographs in Harmonic Analysis, III, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp. | MR | Zbl
[8] C. Pérez, “Endpoint estimates for commutators of singular integral operators”, J. Funct. Anal., 128:1 (1995), 163–185 | DOI | MR | Zbl
[9] C. Pérez, R. Trujillo-González, “Sharp weighted estimates for multilinear commutators”, J. London Math. Soc. (2), 65:3 (2002), 672–692 | DOI | MR | Zbl
[10] S. Bloom, “A commutator theorem and weighted $\mathrm{BMO}$”, Trans. Amer. Math. Soc., 292:1 (1985), 103–122 | DOI | MR | Zbl
[11] Bei Hu, Jiajun Gu, “Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz functions”, J. Math. Anal. Appl., 340:1 (2008), 598–605 | DOI | MR | Zbl
[12] S. G. Krantz, Song-Ying Li, “Boundedness and compactness of integral operators on spaces of homogeneous type and applications. I”, J. Math. Anal. Appl., 258:2 (2001), 629–641 | DOI | MR | Zbl
[13] Yan Lin, Shanzhen Lu, “Toeplitz operators related to strongly singular Calderón–Zygmund operators”, Sci. China Ser. A, 49:8 (2006), 1048–1064 | DOI | MR | Zbl
[14] Lanzhe Liu, “Sharp maximal function inequalities and boundedness for Toeplitz type operator related to general fractional integral operators”, Banach J. Math. Anal., 7:1 (2013), 142–159 | DOI | MR | Zbl
[15] Shanzhen Lu, Huixia Mo, “Toeplitz-type operators on Lebesgue spaces”, Acta Math. Sci. Ser. B (Engl. Ed.), 29:1 (2009), 140–150 | DOI | MR | Zbl
[16] A. P. Calderón, A. Zygmund, “On singular integrals with variable kernels”, Appl. Anal., 7:3 (1978), 221–238 | DOI | MR | Zbl
[17] Lanzhe Liu, “The continuity for multilinear singular integral operators with variable Calderón–Zygmund kernel on Hardy and Herz spaces”, Sib. elektron. matem. izv., 2 (2005), 156–166 | MR | Zbl
[18] Lanzhe Liu, “A good $\lambda$ estimate for multilinear singular integral operators with variable Calderón–Zygmund kernel”, Kragujevac J. Math., 27 (2005), 19–30 | MR | Zbl
[19] Lanzhe Liu, “Weighted estimates of multilinear singular integral operators with variable Calderón–Zygmund kernel for the extreme cases”, Vietnam J. Math., 34:1 (2006), 51–61 | MR | Zbl
[20] Hong Xu, Lanzhe Liu, “Weighted boundedness for multilinear singular integral operator with variable Calderón–Zygmund kernel”, Afr. Diaspora J. Math., 6:1 (2008), 1–12 | MR | Zbl
[21] Shanzhen Lu, Dachun Yang, Zusheng Zhou, “Oscillatory singular integral operators with variable Calderón–Zygmund kernels”, Southeast Asian Bull. Math., 23:3 (1999), 457–470 | MR | Zbl
[22] C. B. Morrey, Jr., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl
[23] G. Di Fazio, M. A. Ragusa, “Commutators and Morrey spaces”, Boll. Un. Mat. Ital. A (7), 5:3 (1991), 323–332 | MR | Zbl
[24] Lanzhe Liu, “Interior estimates in Morrey spaces for solutions of elliptic equations and weighted boundedness for commutators of singular integral operators”, Acta Math. Sci. Ser. B (Engl. Ed.), 25:1 (2005), 89–94 | DOI | MR | Zbl
[25] T. Mizuhara, “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic analysis (Sendai, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, 183–189 | MR | Zbl
[26] Y. Komori, S. Shirai, “Weighted Morrey spaces and a singular integral operator”, Math. Nachr., 282:2 (2009), 219–231 | DOI | MR | Zbl
[27] J. García-Cuerva, “Weighted $H^p$ spaces”, Dissertationes Math. (Rozprawy Mat.), 162 (1979), 63 pp. | MR | Zbl
[28] J. Peetre, “On the theory of $\mathscr L_{p,\lambda}$-spaces”, J. Funct. Anal., 4 (1969), 71–87 | DOI | MR | Zbl