On the global solubility of the Cauchy problem for hyperbolic Monge--Amp\'ere systems
Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 1019-1075.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the global solubility of the Cauchy problem for a class of non-linear hyperbolic systems of two first-order equations with two independent variables. This class contains quasilinear systems. The problem has a unique maximal (with respect to inclusion) many-valued solution, which possesses a completeness property. Namely, characteristics of various families lying on such a solution and converging to the corresponding boundary point have infinite length.
Keywords: non-linear systems, quasilinear systems, Cauchy problem, many-valued solutions, characteristic uniformization.
@article{IM2_2018_82_5_a6,
     author = {D. V. Tunitsky},
     title = {On the global solubility of the {Cauchy} problem for hyperbolic {Monge--Amp\'ere} systems},
     journal = {Izvestiya. Mathematics },
     pages = {1019--1075},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a6/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - On the global solubility of the Cauchy problem for hyperbolic Monge--Amp\'ere systems
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1019
EP  - 1075
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a6/
LA  - en
ID  - IM2_2018_82_5_a6
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T On the global solubility of the Cauchy problem for hyperbolic Monge--Amp\'ere systems
%J Izvestiya. Mathematics 
%D 2018
%P 1019-1075
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a6/
%G en
%F IM2_2018_82_5_a6
D. V. Tunitsky. On the global solubility of the Cauchy problem for hyperbolic Monge--Amp\'ere systems. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 1019-1075. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a6/

[1] V. V. Lychagin, “Differential equations on two-dimensional manifolds”, Russian Math. (Iz. VUZ), 36:5 (1992), 38–51 | MR | Zbl

[2] B. L. Rozhdestvenskii, N. N. Janenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983, xx+676 pp. | MR | MR | Zbl | Zbl

[3] A. Kushner, V. Lychagin, V. Rubtsov, Contact geometry and nonlinear differential equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007, xxii+496 pp. | DOI | MR | Zbl

[4] D. V. Tunitskii, “Hyperbolic Monge–Ampère systems”, Sb. Math., 197:8 (2006), 1223–1258 | DOI | DOI | MR | Zbl

[5] D. V. Tunitskii, “On the global solubility of the Monge–Ampère hyperbolic equations”, Izv. Math., 61:5 (1997), 1069–1111 | DOI | DOI | MR | Zbl

[6] D. V. Tunitsky, “On some categories of Monge–Ampère systems of equations”, Sb. Math., 200:11 (2009), 1681–1714 | DOI | DOI | MR | Zbl

[7] D. V. Tunitskii, “On the contact linearization of Monge–Ampere equations”, Izv. Math., 60:2 (1996), 425–451 | DOI | DOI | MR | Zbl

[8] É. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Actualités Sci. Ind., 994, Hermann et Cie., Paris, 1945, 214 pp. | MR | Zbl

[9] R. Courant, D. Hilbert, Methods of mathematical physics, v. II, Partial differential equations, (vol. II by R. Courant), Interscience Publishers, a division of John Wiley Sons, New York–London, 1962, xxii+830 pp. | MR | MR | Zbl | Zbl

[10] M. Postnikov, Smooth manifolds, Lectures in geometry. Semester III, Mir, Moscow, 1989, 511 pp. | MR | MR | Zbl | Zbl

[11] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior differential systems, Math. Sci. Res. Inst. Publ., 18, Springer-Verlag, New York, 1991, viii+475 pp. | DOI | MR | Zbl

[12] S. I. Bilchev, “Sistemy iz dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo poryadka (lokalnaya teoriya)”, Izv. vuzov. Matem., 1970, no. 3, 14–21 | MR | Zbl

[13] A. M. Vasilev, Teoriya differentsialno-geometricheskikh struktur, MGU, M., 1987, 192 pp. | MR | Zbl

[14] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, Ill.–London, 1971, viii+270 pp. | MR | MR | Zbl | Zbl

[15] R. A. Aleksandryan, E. A. Mirzakhanyan, Obschaya topologiya, Vysshaya shkola, M., 1979, 336 pp. | Zbl

[16] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | MR | Zbl | Zbl

[17] H. Lewy, “Über das Anfangswertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhängigen Veränderlichen”, Math. Ann., 98:1 (1928), 179–191 | DOI | MR | Zbl

[18] P. Hartman, A. Wintner, “On hyperbolic partial differential equations”, Amer. J. Math., 74:4 (1952), 834–864 | DOI | MR | Zbl

[19] Obschaya algebra, v. 1, ed. L. A. Skornyakov, Nauka, M., 1990, 592 pp. | MR | Zbl

[20] L. Pontriaguine, Équations différentielles ordinaires, Éditions Mir, Moscow, 1969, 347 pp. | MR | MR | Zbl | Zbl

[21] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl

[22] S. Godounov, Équations de la physique mathématique, Éditions Mir, Moscow, 1973, 452 pp. | MR | MR | Zbl

[23] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, Interscience Publishers, a division of John Wiley Sons, New York–London, 1963, xi+329 pp. | MR | MR | Zbl | Zbl

[24] K. R. Parthasarathy, Introduction to probability and measure, The Macmillan Co. of India, Ltd., Delhi, 1977, xii+312 pp. | MR | MR | Zbl | Zbl