On the classification of varieties generated by wreath products of groups
Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 1006-1018.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a classification of all cases when, for a nilpotent group $A$ of finite exponent and an abelian group $B$, the variety $\operatorname{var}(A \mathbin{\mathrm{Wr}} B)$ generated by their wreath product is equal to the product $\operatorname{var}(A)\operatorname{var}(B)$ of the varieties $\operatorname{var}(A)$ and $\operatorname{var}(B)$ generated by $A$ and $B$. This generalizes some results in the literature concerning the same problem for more restricted types of groups. This classification extends our earlier work on varieties generated by wreath products of abelian groups and wreath products of finite groups.
Keywords: wreath products of groups, varieties of groups, products of varieties, abelian and nilpotent groups, critical groups.
@article{IM2_2018_82_5_a5,
     author = {V. H. Mikaelian},
     title = {On the classification of varieties generated by wreath products of groups},
     journal = {Izvestiya. Mathematics },
     pages = {1006--1018},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a5/}
}
TY  - JOUR
AU  - V. H. Mikaelian
TI  - On the classification of varieties generated by wreath products of groups
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1006
EP  - 1018
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a5/
LA  - en
ID  - IM2_2018_82_5_a5
ER  - 
%0 Journal Article
%A V. H. Mikaelian
%T On the classification of varieties generated by wreath products of groups
%J Izvestiya. Mathematics 
%D 2018
%P 1006-1018
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a5/
%G en
%F IM2_2018_82_5_a5
V. H. Mikaelian. On the classification of varieties generated by wreath products of groups. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 1006-1018. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a5/

[1] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979, xvii+203 pp. | MR | MR | Zbl | Zbl

[2] D.J̇. S. Robinson, A course in the theory of groups, Grad. Texts in Math., 80, 2nd ed., Springer-Verlag, New York, 1996, xviii+499 pp. | DOI | MR | Zbl

[3] V. H. Mikaelian, “On varieties of groups generated by wreath products of abelian groups”, Abelian groups, rings and modules (Perth, 2000), Contemp. Math., 273, Amer. Math. Soc., Providence, RI, 2001, 223–238 | DOI | MR | Zbl

[4] V. H. Mikaelian, “Metabelian varieties of groups and wreath products of abelian groups”, J. Algebra, 313:2 (2007), 455–485 | DOI | MR | Zbl

[5] V. H. Mikaelian, “Subnormal embedding theorems for groups”, J. London Math. Soc. (2), 62:2 (2000), 398–406 | DOI | MR | Zbl

[6] V. H. Mikaelian, “The criterion of Shmel'kin and varieties generated by wreath products of finite groups”, Algebra and Logic, 56:2 (2017), 108–115 ; arXiv: 1503.08474 | DOI | DOI | MR | Zbl

[7] G. Higman, “Some remarks on varieties of groups”, Quart. J. Math. Oxford Ser. (2), 10:1 (1959), 165–178 | DOI | MR | Zbl

[8] H. Neumann, Varieties of groups, Ergeb. Math. Grenzgeb., 37, Springer-Verlag, New York, 1967, x+192 pp. | MR | MR | Zbl

[9] R. G. Burns, “Verbal wreath products and certain product varieties of groups”, J. Austral. Math. Soc., 7 (1967), 356–374 | DOI | MR | Zbl

[10] B. H. Neumann, H. Neumann, P. M. Neumann, “Wreath products and varieties of groups”, Math. Z., 80 (1962), 44–62 | DOI | MR | Zbl

[11] G. Baumslag, “Wreath products and extensions”, Math. Z., 81 (1963), 286–299 | DOI | MR | Zbl

[12] W. Gaschütz, “Über die $\Phi$-Untergruppe endlicher Gruppen”, Math. Z., 58 (1953), 160–170 | DOI | MR | Zbl

[13] H. Fitting, “Beiträge zur Theorie der Gruppen endlicher Ordnung”, Jahresber. Dtsch. Math.-Ver., 48 (1938), 77–141 | Zbl

[14] V. H. Mikaelian, “On $K_p$-series and varieties generated by wreath products of $p$-groups”, Internat. J. Algebra Comput. (to appear)

[15] A. Yu. Ol'shanskii, “On the Neumann–Shmel'kin theorem”, Moscow Univ. Math. Bull., 41:6 (1986), 52–55 | MR | Zbl

[16] M. Krasner, L. Kaloujnine, “Produit complet des groupes de permutations et le problème d'extension des groupes. III”, Acta Sci. Math. Szeged, 14 (1951), 69–82 | MR | Zbl

[17] G. Baumslag, “Wreath products and $p$-groups”, Proc. Cambridge Philos. Soc., 55:3 (1959), 224–231 | DOI | MR | Zbl

[18] A. L. Shmelkin, “Spleteniya i mnogoobraziya grupp”, Izv. AN SSSR. Ser. matem., 29:1 (1965), 149–170 | MR | Zbl

[19] L. G. Kovács, “Free groups in a dihedral variety”, Proc. Roy. Irish Acad. Sect. A, 89:1 (1989), 115–117 | MR | Zbl