On a~classical correspondence of real K3 surfaces
Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 662-693
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the classical correspondence between real
K3 surfaces of degree 8 which are complete intersections
of three real quadrics, and real K3 surfaces which are two-sheeted
coverings of the corresponding pencils of quadrics with branching along the
curves of degenerate quadrics.
Keywords:
real K3 surface, pencil of quadrics,
two-sheeted covering, deformation class, theta characteristic.
Mots-clés : real triquadric
Mots-clés : real triquadric
@article{IM2_2018_82_4_a1,
author = {V. A. Krasnov},
title = {On a~classical correspondence of real {K3} surfaces},
journal = {Izvestiya. Mathematics },
pages = {662--693},
publisher = {mathdoc},
volume = {82},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a1/}
}
V. A. Krasnov. On a~classical correspondence of real K3 surfaces. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 662-693. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a1/