On a~classical correspondence of real K3 surfaces
Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 662-693.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the classical correspondence between real K3 surfaces of degree 8 which are complete intersections of three real quadrics, and real K3 surfaces which are two-sheeted coverings of the corresponding pencils of quadrics with branching along the curves of degenerate quadrics.
Keywords: real K3 surface, pencil of quadrics, two-sheeted covering, deformation class, theta characteristic.
Mots-clés : real triquadric
@article{IM2_2018_82_4_a1,
     author = {V. A. Krasnov},
     title = {On a~classical correspondence of real {K3} surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {662--693},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a1/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On a~classical correspondence of real K3 surfaces
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 662
EP  - 693
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a1/
LA  - en
ID  - IM2_2018_82_4_a1
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On a~classical correspondence of real K3 surfaces
%J Izvestiya. Mathematics 
%D 2018
%P 662-693
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a1/
%G en
%F IM2_2018_82_4_a1
V. A. Krasnov. On a~classical correspondence of real K3 surfaces. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 662-693. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a1/

[1] A. A. Agrachev, “Topology of quadratic maps and Hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl

[2] A. A. Agrachev, “Homology of the intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl

[3] A. Agrachev, A. Lerario, “Systems of quadratic inequalities”, Proc. Lond. Math. Soc. (3), 105:3 (2012), 622–660 | DOI | MR | Zbl

[4] A. C. Dixon, “Note on the reduction of a ternary quantic to symmetrical determinant”, Proc. Cambridge Philos. Soc., 11 (1902), 350–351 | Zbl

[5] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl

[6] M. F. Atiyah, “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4:1 (1971), 47–62 | DOI | MR | Zbl

[7] B. Gross, J. Harris, “Real algebraic curves”, Ann. Sci. École Norm. Sup. (4), 14:2 (1981), 157–182 | DOI | MR | Zbl

[8] O. Ya. Viro, “Real plane algebraic curves: constructions with controlled topology”, Leningrad Math. J., 1:5 (1990), 1059–1134 | MR | Zbl

[9] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl

[10] V. A. Krasnov, “Real $M$-triquadrics”, Izv. Math., 77:1 (2013), 30–43 | DOI | DOI | MR | Zbl

[11] C. G. Madonna, V. V. Nikulin, “On a classical correspondence between $\mathrm{K}3$ surfaces”, Proc. Steklov Inst. Math., 241 (2003), 120–153 | MR | Zbl

[12] S. Mukai, “On the moduli space of bundles on $K3$ surfaces. I”, Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., 11, Tata Inst. Fund. Res., Bombay, 1987, 341–413 | MR | Zbl

[13] V. I. Arnol'd, “Distribution of ovals of the real plane of algebraic curves, of involutions of four-dimensional smooth manifolds, and the arithmetic of integer-valued quadratic forms”, Funct. Anal. Appl., 5:3 (1971), 169–176 | DOI | MR | Zbl

[14] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR-Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl

[15] V. V. Nikulin, “On the connected components of moduli of real polarized $\mathrm{K}3$-surfaces”, Izv. Math., 72:1 (2008), 91–111 | DOI | DOI | MR | Zbl

[16] V. V. Nikulin, S. Saito, “Real $\mathrm{K}3$ surfaces with non-symplectic involution and applications”, Proc. London Math. Soc. (3), 90:3 (2005), 591–654 | DOI | MR | Zbl

[17] V. M. Kharlamov, “The topological type of nonsingular surfaces in $\mathrm{RP}^3$ of degree four”, Funct. Anal. Appl., 10:4 (1976), 295–305 | DOI | MR | Zbl

[18] M. Khalid, “On $\mathrm{K}3$ correspondences”, J. Reine Angew. Math., 2005:589 (2005), 57–78 | DOI | MR | Zbl

[19] V. A. Krasnov, “On equivariant Grothendieck cohomology of a real algebraic variety, and its applications”, Russian Acad. Sci. Izv. Math., 44:3 (1995), 461–477 | DOI | MR | Zbl

[20] V. Vinnikov, “Self-adjoint determinantal representations of real plane curves”, Math. Ann., 296:3 (1993), 453–479 | DOI | MR | Zbl

[21] A. Degtyarev, I. Itenberg, V. Kharlamov, “On the number of components of a complete intersection of real quadrics”, Perspectives in analysis, geometry, and topology, Progr. Math., 296, Birkhäuser/Springer, New York, 2012, 81–107 | DOI | MR | Zbl

[22] M. F. Atiyah, K-theory, Lecture notes by D. W. Anderson, W. A. Benjamin, Inc., New York–Amsterdam, 1967, v+166+xlix pp. | MR | MR | Zbl | Zbl

[23] V. A. Krasnov, “On real quadric line complexes”, Izv. Math., 74:6 (2010), 1255–1276 | DOI | DOI | MR | Zbl

[24] I. O. Kalinin, “Cohomological characteristics of real projective hypersurfaces”, St. Petersburg Math. J., 3:2 (1992), 313–332 | MR | Zbl

[25] A. Degtyarev, V. Kharlamov, Distribution of the components of a real Enriques surface, preprint of the Max-Plank Institute, MPI/95-58, 1995, 40 pp. https://hal.archives-ouvertes.fr/hal-00129542/

[26] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000, xvi+259 pp. | DOI | MR | Zbl