Approximating $\ln 2$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 549-577.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a new integral construction combining the idea of symmetry suggested by the second author in 2007 and the integral introduced by Marcovecchio in 2009, we obtain a new bound for the approximation of $\ln{2}$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$.
Keywords: irrationality measure, linear form, complex integral.
@article{IM2_2018_82_3_a5,
     author = {M. Yu. Luchin and V. Kh. Salikhov},
     title = {Approximating $\ln 2$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$},
     journal = {Izvestiya. Mathematics },
     pages = {549--577},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a5/}
}
TY  - JOUR
AU  - M. Yu. Luchin
AU  - V. Kh. Salikhov
TI  - Approximating $\ln 2$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 549
EP  - 577
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a5/
LA  - en
ID  - IM2_2018_82_3_a5
ER  - 
%0 Journal Article
%A M. Yu. Luchin
%A V. Kh. Salikhov
%T Approximating $\ln 2$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$
%J Izvestiya. Mathematics 
%D 2018
%P 549-577
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a5/
%G en
%F IM2_2018_82_3_a5
M. Yu. Luchin; V. Kh. Salikhov. Approximating $\ln 2$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 549-577. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a5/

[1] F. Amoroso, C. Viola, “Approximation measures for logarithms of algebraic numbers”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30:1 (2001), 225–249 | MR | Zbl

[2] E. S. Sal'nikova, “Diophantine approximations of $\log 2$ and other logarithms”, Math. Notes, 83:3 (2008), 389–398 | DOI | DOI | MR | Zbl

[3] R. Marcovecchio, “The Rhin–Viola method for $\log{2}$”, Acta Arith., 139:2 (2009), 147–184 | DOI | MR | Zbl

[4] V. A. Androsenko, V. Kh. Salikhov, “Symmetrized version of the Markovecchio integral in the theory of Diophantine approximations”, Math. Notes, 97:4 (2015), 493–501 | DOI | DOI | MR | Zbl

[5] M. Hata, “$\mathbf{C}^2$-saddle method and Beukers' integral”, Trans. Amer. Math. Soc., 352:10 (2000), 4557–4583 | DOI | MR | Zbl

[6] V. A. Androsenko, “Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$”, Izv. Math., 79:1 (2015), 1–17 | DOI | DOI | MR | Zbl

[7] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977, 368 pp. | MR | Zbl

[8] G. Rhin, C. Viola, “On a permutation group related to $\zeta(2)$”, Acta Arith., 77:1 (1996), 23–56 | DOI | MR | Zbl

[9] Yu. V. Nesterenko, “On the irrationality exponent of the number $\ln 2$”, Math. Notes, 88:4 (2010), 530–543 | DOI | DOI | MR | Zbl

[10] A. A. Polyanskii, “Quadratic irrationality exponents of certain numbers”, Moscow Univ. Math. Bull., 68:5 (2013), 237–240 | DOI | MR | Zbl