Approximating $\ln 2$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 549-577
Voir la notice de l'article provenant de la source Math-Net.Ru
Using a new integral construction combining the idea of symmetry suggested
by the second author in 2007 and the integral introduced by Marcovecchio in 2009,
we obtain a new bound for the approximation of $\ln{2}$ by numbers in the field
$\mathbb{Q}(\sqrt{2}\,)$.
Keywords:
irrationality measure, linear form, complex integral.
@article{IM2_2018_82_3_a5,
author = {M. Yu. Luchin and V. Kh. Salikhov},
title = {Approximating $\ln 2$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$},
journal = {Izvestiya. Mathematics },
pages = {549--577},
publisher = {mathdoc},
volume = {82},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a5/}
}
M. Yu. Luchin; V. Kh. Salikhov. Approximating $\ln 2$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 549-577. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a5/