Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 532-548.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an algebraic number field $K$ and a prime $\ell$ we study the subgroups of global universal norms $U_{S,1}(K)$ and of everywhere locally universal norms $U_{S,2}(K)$ in the cyclotomic $\mathbb Z_\ell$-extension $K_\infty$ of $K$ in the pro-$\ell$-completion of the group of $S$-units $U_S(K)[\ell]$, where $S$ is the set of all places over $\ell$. Assuming that the $\ell$-adic Schanuel conjecture holds, we prove the finiteness of the index $(U_{S,2}(K):U_{S,1}(K))$, whence we obtain a conditional proof of a conjecture in [1] on the Iwasawa module. We also obtain an unconditional proof of all these results in the particular case when $K$ is a Galois extension of $\mathbb Q$ with symmetric Galois group $G=S_4$, $K$ contains an imaginary quadratic field, and $\ell$ is a prime such that the decomposition subgroup of its prime divisor coincides with the Sylow $3$-subgroup of $G$.
Keywords: $S$-units, local universal norms, global universal norms, cyclotomic $\mathbb Z_\ell$-extension, Iwasawa theory.
Mots-clés : Schanuel's conjecture
@article{IM2_2018_82_3_a4,
     author = {L. V. Kuz'min},
     title = {Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension},
     journal = {Izvestiya. Mathematics },
     pages = {532--548},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a4/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 532
EP  - 548
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a4/
LA  - en
ID  - IM2_2018_82_3_a4
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension
%J Izvestiya. Mathematics 
%D 2018
%P 532-548
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a4/
%G en
%F IM2_2018_82_3_a4
L. V. Kuz'min. Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 532-548. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a4/

[1] L. V. Kuz'min, “The Tate module for algebraic number fields”, Math. USSR-Izv., 6:2 (1972), 263–321 | DOI | MR | Zbl

[2] L. V. Kuz'min, “On a new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)”, Izv. Math., 79:1 (2015), 109–144 | DOI | DOI | MR | Zbl

[3] S. Lang, Introduction to transcendental numbers, Addison-Wesley Publishing Co., Reading, Mass.–London–Don Mills, Ont., 1966, vi+105 pp. | MR | Zbl

[4] B. L. van der Varden, Algebra, 2-e izd., Nauka, M., 1979, 624 pp. ; B. L. van der Waerden, Algebra, v. I, Heidelberger Taschenbücher, 12, 8. Aufl., Springer-Verlag, Berlin–New York, 1971, ix+272 pp. ; v. II, Heidelberger Taschenbücher, 23, 5. Aufl., 1967, x+300 pp. | MR | Zbl | Zbl | MR | Zbl