Mots-clés : Schanuel's conjecture
@article{IM2_2018_82_3_a4,
author = {L. V. Kuz'min},
title = {Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension},
journal = {Izvestiya. Mathematics},
pages = {532--548},
year = {2018},
volume = {82},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a4/}
}
L. V. Kuz'min. Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension. Izvestiya. Mathematics, Tome 82 (2018) no. 3, pp. 532-548. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a4/
[1] L. V. Kuz'min, “The Tate module for algebraic number fields”, Math. USSR-Izv., 6:2 (1972), 263–321 | DOI | MR | Zbl
[2] L. V. Kuz'min, “On a new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)”, Izv. Math., 79:1 (2015), 109–144 | DOI | DOI | MR | Zbl
[3] S. Lang, Introduction to transcendental numbers, Addison-Wesley Publishing Co., Reading, Mass.–London–Don Mills, Ont., 1966, vi+105 pp. | MR | Zbl
[4] B. L. van der Varden, Algebra, 2-e izd., Nauka, M., 1979, 624 pp. ; B. L. van der Waerden, Algebra, v. I, Heidelberger Taschenbücher, 12, 8. Aufl., Springer-Verlag, Berlin–New York, 1971, ix+272 pp. ; v. II, Heidelberger Taschenbücher, 23, 5. Aufl., 1967, x+300 pp. | MR | Zbl | Zbl | MR | Zbl