Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 186-211

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some questions about the approximation of functions on the infinite-dimensional torus by trigonometric polynomials. Our main results are analogues of the direct and inverse theorems in the classical theory of approximation of periodic functions and a description of the Lipschitz spaces on the infinite-dimensional torus in terms of the best approximation.
Keywords: Lipschitz spaces, infinite-dimensional torus, harmonic analysis on compact groups, approximation of functions, function spaces.
@article{IM2_2018_82_1_a6,
     author = {S. S. Platonov},
     title = {Certain approximation problems for functions on the infinite-dimensional torus: {Lipschitz} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {186--211},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 186
EP  - 211
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/
LA  - en
ID  - IM2_2018_82_1_a6
ER  - 
%0 Journal Article
%A S. S. Platonov
%T Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces
%J Izvestiya. Mathematics 
%D 2018
%P 186-211
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/
%G en
%F IM2_2018_82_1_a6
S. S. Platonov. Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 186-211. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/