Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 186-211
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider some questions about the approximation of functions
on the infinite-dimensional torus by trigonometric polynomials. Our main results
are analogues of the direct and inverse theorems in the classical theory
of approximation of periodic functions and a description of the Lipschitz
spaces on the infinite-dimensional torus in terms of the best approximation.
Keywords:
Lipschitz spaces, infinite-dimensional torus, harmonic analysis on compact groups,
approximation of functions, function spaces.
@article{IM2_2018_82_1_a6,
author = {S. S. Platonov},
title = {Certain approximation problems for functions on the infinite-dimensional torus: {Lipschitz} spaces},
journal = {Izvestiya. Mathematics },
pages = {186--211},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/}
}
TY - JOUR AU - S. S. Platonov TI - Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces JO - Izvestiya. Mathematics PY - 2018 SP - 186 EP - 211 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/ LA - en ID - IM2_2018_82_1_a6 ER -
S. S. Platonov. Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 186-211. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/