Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 186-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some questions about the approximation of functions on the infinite-dimensional torus by trigonometric polynomials. Our main results are analogues of the direct and inverse theorems in the classical theory of approximation of periodic functions and a description of the Lipschitz spaces on the infinite-dimensional torus in terms of the best approximation.
Keywords: Lipschitz spaces, infinite-dimensional torus, harmonic analysis on compact groups, approximation of functions, function spaces.
@article{IM2_2018_82_1_a6,
     author = {S. S. Platonov},
     title = {Certain approximation problems for functions on the infinite-dimensional torus: {Lipschitz} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {186--211},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 186
EP  - 211
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/
LA  - en
ID  - IM2_2018_82_1_a6
ER  - 
%0 Journal Article
%A S. S. Platonov
%T Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces
%J Izvestiya. Mathematics 
%D 2018
%P 186-211
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/
%G en
%F IM2_2018_82_1_a6
S. S. Platonov. Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 186-211. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a6/

[1] E. Khyuitt, K. A. Ross, Abstraktnyi garmonicheskii analiz, v. I, Nauka, M., 1975, 654 pp. ; т. II, Мир, М., 1975, 901 с. ; E. Hewitt, K. A. Ross, Abstract harmonic analysis, т. I, Grundlehren Math. Wiss., 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, viii+519 с. ; v. II, Grundlehren Math. Wiss., 152, Springer-Verlag, New York–Berlin, 1970, ix+771 pp. | MR | MR | DOI | MR | Zbl | MR | Zbl

[2] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, 12, Interscience Publishers (a division of John Wiley Sons), New York–London, 1962, ix+285 pp. | MR | Zbl

[3] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | MR | Zbl | Zbl

[4] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl

[5] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981, 180 pp. | MR | Zbl

[6] Ch. Berg, “Potential theory on the infinite dimensional torus”, Invent. Math., 32:1 (1976), 49–100 | DOI | MR | Zbl

[7] R. Holley, D. Stroock, “Diffusions on an infinite dimensional torus”, J. Funct. Anal., 42:1 (1981), 29–63 | DOI | MR | Zbl

[8] Th. J. S. Taylor, “On the Wiener semigroup and harmonic analysis on the infinite dimensional torus”, Acta Appl. Math., 10:2 (1987), 131–143 | MR | Zbl

[9] A. Bendikov, L. Saloff-Coste, “On the sample parts of diagonal Brownian motions on the infinite dimensional torus”, Ann. Inst. H. Poincaré Probab. Statist., 40:2 (2004), 227–254 | DOI | MR | Zbl

[10] B. Jessen, “The theory of integration in a space of an infinite number of dimensions”, Acta Math., 63 (1934), 249–323 | DOI | MR | Zbl

[11] N. N. Kholshchevnikova, “Uniqueness for trigonometric series with respect to an increasing number of variables”, Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S160–S166 | MR | Zbl

[12] N. N. Kholshchevnikova, “Countably multiple null series”, Proc. Steklov Inst. Math., 280 (2013), 280–291 | DOI | DOI | MR | Zbl

[13] S. S. Platonov, “Certain approximation problems for functions on the infinite-dimensional torus: analogs of the Jackson theorem”, St. Petersburg Math. J., 26:6 (2015), 933–947 | DOI | MR | Zbl

[14] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[15] A. F. Timan, M. F. Timan, “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR, 71:1 (1950), 17–20 | MR | Zbl

[16] A. F. Timan, Theory of approximation of functions of a real variable, International Series of Monographs in Pure and Applied Mathematics, 34, A Pergamon Press Book. The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl

[17] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 511 pp. | MR | Zbl

[18] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp. | MR | Zbl

[19] N. Bourbaki, Éléments de mathématique, Fasc. XXXII. Théories spectrales. Chap. I: Algèbres normées. Chap. II: Groupes localement compacts commutatifs, Actualites Sci. Indust., 1332, Hermann, Paris, 1967, iv+166 pp. | MR | MR | Zbl | Zbl

[20] F. Bruhat, “Distributions sur un groupe localement compact et applications à l'étude des representations des groupes $p$-adiques”, Bull. Soc. Math. France, 89 (1961), 43–75 | DOI | MR | Zbl