On intersections of two real quadrics
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 91-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to describing properties of complete intersections of two real projective quadrics. For brevity we call such varieties biquadrics. One of the main sections is devoted to real projective spaces on real biquadrics. In another main section we study the topology of the real parts of biquadrics. The other sections are auxiliary.
Keywords: pencil of quadrics, index function, rigid isotopy classification, topological type.
Mots-clés : quadric, biquadric
@article{IM2_2018_82_1_a4,
     author = {V. A. Krasnov},
     title = {On intersections of two real quadrics},
     journal = {Izvestiya. Mathematics },
     pages = {91--139},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On intersections of two real quadrics
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 91
EP  - 139
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a4/
LA  - en
ID  - IM2_2018_82_1_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On intersections of two real quadrics
%J Izvestiya. Mathematics 
%D 2018
%P 91-139
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a4/
%G en
%F IM2_2018_82_1_a4
V. A. Krasnov. On intersections of two real quadrics. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 91-139. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a4/

[1] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Math. Library, 4, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., New York, 1974, vii+292 pp. | MR | MR | Zbl | Zbl

[2] M. Demazure, “Surfaces de Del Pezzo. II, III, IV, V”, Séminaire sur les singularités des surfaces (Centre de Mathématiques de l'Ecole Polytechnique, Palaiseau, 1976–1977), Lecture Notes in Math., 777, Springer, Berlin, 1980, 23–69 | DOI | Zbl

[3] C. T. C. Wall, “Real forms of smooth del Pezzo surfaces”, J. Reine Angew. Math., 1987:375/376 (1987), 47–66 | DOI | MR | Zbl

[4] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl

[5] F. Klein, “Zur Theorie der Linencomplexe der ersten und zweiten Grades”, Math. Ann., 2:2 (1870), 198–226 | DOI | MR | Zbl

[6] C. M. Jessop, A treatise on line complex, Cambridge Univ. Press, Cambridge, 1903, xv+362 pp. | MR | Zbl

[7] R. W. H. T. Hudson, Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, xi+219 pp. | MR | Zbl

[8] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl

[9] A. N. Tyurin, “Five lectures on three-dimensional varieties”, Russian Math. Surveys, 27:5 (1972), 1–53 | DOI | MR | Zbl

[10] V. A. Krasnov, “On real quadric line complexes”, Izv. Math., 74:6 (2010), 1255–1276 | DOI | DOI | MR | Zbl

[11] V. A. Krasnov, “Rigid isotopy classification of real quadric line complexes and associated Kummer surfaces”, Math. Notes, 89:5 (2011), 661–671 | DOI | DOI | MR | Zbl

[12] V. A. Krasnov, “Real three-dimensional biquadrics”, Izv. Math., 74:4 (2010), 781–804 | DOI | DOI | MR | Zbl

[13] M. Reid, The complete intersection of two or more quadrics, Thesis (Ph. D.), Univ. of Cambridge, Cambridge, 1972, 94 pp.

[14] R. Donagi, “Group law on the intersection of two quadrics”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7:2 (1980), 217–239 | MR | Zbl

[15] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR-Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl

[16] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer, Berlin, 2000, xvi+259 pp. | DOI | MR | Zbl

[17] A. A. Agrachev, R. V. Gamkrelidze, “Quadratic maps and smooth vector-valued functions: Euler characteristics of level sets”, J. Soviet Math., 55:4 (1991), 1892–1928 | DOI | MR | Zbl

[18] S. López de Medrano, “Topology of the intersection of quadrics in $\mathbb{R}^n$”, Algebraic topology (Arcata, CA, 1986), Lecture Notes in Math., 1370, Springer, Berlin, 1989, 280–292 | DOI | MR | Zbl

[19] V. A. Krasnov, “Real $GM$-biquadrics”, Math. Notes, 89:6 (2011), 830–838 | DOI | DOI | MR | Zbl

[20] C. T. C. Wall, “Stability, pencils and polytopes”, Bull. London Math. Soc., 12:6 (1980), 401–421 | DOI | MR | Zbl

[21] A. A. Agrachev, “Homology of the intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl

[22] V. A. Krasnov, “Real algebraically maximal varieties”, Math. Notes, 73:6 (2003), 806–812 | DOI | DOI | MR | Zbl

[23] A. Comessatti, “Sulle varietá abeliane reali”, Ann. Mat. Pura Appl., 2:1 (1925), 67–106 | DOI | MR | Zbl

[24] V. A. Krasnov, “Albanese mapping for real algebraic varieites”, Math. Notes, 32:3 (1982), 661–666 | DOI | MR | Zbl

[25] V. Gómes Gutiérrez, S. López de Medrano, “Topology of the intersections of quadrics II”, Bol. Soc. Mat. Mex. (3), 20:2 (2014), 237–255 | DOI | MR | Zbl

[26] C. P. Rourke, B. J. Sanderson, Introduction to piecewise-linear topology, Ergeb. Math. Grenzgeb., 69, Springer-Verlag, New York–Heidelberg, 1972, viii+123 pp. | MR | MR | Zbl

[27] N. E. Steenrod, “The classification of sphere bundles”, Ann. of Math. (2), 45:2 (1944), 294–311 | DOI | MR | Zbl

[28] J. Milnor, “A procedure for killing homotopy groups of differentiable manifolds”, Proc. Sympos. Pure Math., 3, Amer. Math. Soc., Providence, R.I., 1961, 39–55 | DOI | MR | Zbl

[29] V. A. Krasnov, “Real four-dimensional biquadrics”, Izv. Math., 75:2 (2011), 371–394 | DOI | DOI | MR | Zbl

[30] A. I. Degtyarev, V. M. Kharlamov, “Topological properties of real algebraic varieties: du coté de chez Rokhlin”, Russian Math. Surveys, 55:4 (2000), 735–814 | DOI | DOI | MR | Zbl

[31] V. I. Arnol'd, “Distribution of ovals of the real plane of algebraic curves, of involutions of four-dimensional smooth manifolds, and the arithmetic of integer-valued quadratic forms”, Funct. Anal. Appl., 5:3 (1971), 169–176 ; II, 7:2 (1973), 91–92 | DOI | MR | Zbl | MR | Zbl

[32] V. A. Rokhlin, “Congruences modulo 16 in Hilbert's sixtieth problem”, Funct. Anal. Appl., 6:4 (1972), 301–306 ; “Congruences modulo 16 in Hilbert's sixteenth problem”, II, 7:2 (1973), 163–164 | DOI | DOI | MR | MR | Zbl | Zbl

[33] H. Knörrer, Isolierte Singularitaten von Durchschnitten zweier Quadriken, Bonn. Math. Schr., 117, Univ. Bonn, Math. Inst., Bonn, 1980, ix+132 pp. | MR | Zbl

[34] W. V. D. Hodge, D. Pedoe, Methods of algebraic geometry, v. II, Cambridge Univ. Press, Cambridge, 1952, x+394 pp. | MR | Zbl

[35] C. G. Gibson, “Regularity of the Segre stratification”, Math. Proc. Cambridge Philos. Soc., 80:1 (1976), 91–97 | DOI | MR | Zbl

[36] V. A. Krasnov, “Harnack–Thom inequalities for mappings of real algebraic varieties”, Math. USSR-Izv., 22:2 (1984), 247–275 | DOI | MR | Zbl

[37] V. A. Krasnov, “Real algebraic GM-varieties”, Izv. Math., 62:3 (1998), 465–491 | DOI | DOI | MR | Zbl

[38] I. O. Kalinin, “Cohomology of real algebraic varieties”, J. Math. Sci. (N. Y.), 131:1 (2005), 5323–5344 | DOI | MR | Zbl

[39] V. A. Krasnov, “Degenerations of real algebraic varieties”, Math. USSR-Izv., 27:1 (1986), 115–140 | DOI | MR | Zbl

[40] P. Orlik, F. Raymond, “Actions of the torus on 4-manifolds. I”, Trans. Amer. Math. Soc., 152:2 (1970), 531–559 | DOI | MR | Zbl

[41] P. Orlik, F. Raymond, “Actions of the torus on 4-manifolds. II”, Topology, 13:2 (1974), 89–112 | DOI | MR | Zbl