High-frequency asymptotics of solutions of ODE in a~Banach space
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1234-1252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and justify high-frequency asymptotic expansions of solutions for some class of linear ODE in a Banach space. In particular, we obtain new results in the case when the averaged ODE are degenerate.
Keywords: periodic solution, differential equation, averaging, homogenization.
@article{IM2_2017_81_6_a8,
     author = {L. I. Sazonov},
     title = {High-frequency asymptotics of solutions of {ODE} in {a~Banach} space},
     journal = {Izvestiya. Mathematics },
     pages = {1234--1252},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a8/}
}
TY  - JOUR
AU  - L. I. Sazonov
TI  - High-frequency asymptotics of solutions of ODE in a~Banach space
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1234
EP  - 1252
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a8/
LA  - en
ID  - IM2_2017_81_6_a8
ER  - 
%0 Journal Article
%A L. I. Sazonov
%T High-frequency asymptotics of solutions of ODE in a~Banach space
%J Izvestiya. Mathematics 
%D 2017
%P 1234-1252
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a8/
%G en
%F IM2_2017_81_6_a8
L. I. Sazonov. High-frequency asymptotics of solutions of ODE in a~Banach space. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1234-1252. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a8/

[1] N. N. Bogolyubov, Yu. A. Mitropolśkii, Asymptotic methods in the theory of non-linear oscillations, International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi; Gordon and Breach Science Publishers, New York, 1961, v+537 pp. | MR | MR | Zbl | Zbl

[2] I. B. Simonenko, “A justification of the averaging method for abstract parabolic equations”, Math. USSR-Sb., 10:1 (1970), 51–59 | DOI | MR | Zbl

[3] V. V. Žikov, “Some admissibility and dichotomy questions. The averaging principle”, Math. USSR-Izv., 10(1976):6 (1978), 1307–1332 | DOI | MR | Zbl

[4] V. B. Levenshtam, “Justification of the averaging method for the convection problem with high-frequency vibrations”, Siberian Math. J., 34:2 (1993), 280–296 | DOI | MR | Zbl

[5] V. B. Levenshtam, “Justification of the averaging method for parabolic equations containing rapidly oscillating terms with large amplitudes”, Izv. Math., 70:2 (2006), 233–263 | DOI | DOI | MR | Zbl

[6] V. B. Levenshtam, “Justification of the averaging method for a system of equations with the Navier–Stokes operator in the principal part”, St. Petersburg Math. J., 26:1 (2015), 69–90 | DOI | MR | Zbl

[7] Ngoc Thanh Do, V. B. Levenshtam, “Asymptotic integration of a system of differential equations with a large parameter in the critical case”, Comput. Math. Math. Phys., 51:6 (2011), 975–986 | DOI | MR | Zbl

[8] V. V. Gusachenko, E. A. Il'icheva, V. B. Levenshtam, “Linear parabolic problem: high-frequency asymptotics in the critical case”, Comput. Math. Math. Phys., 53:7 (2013), 882–895 | DOI | DOI | MR | Zbl

[9] V. B. Levenshtam, “Asymptotic integration of linear parabolic problems with high-frequency coefficients in the critical case”, Math. Notes, 96:4 (2014), 499–513 | DOI | DOI | MR | Zbl

[10] M. R. Ishmeev, V. B. Levenshtam, “High-frequency asymptotics of a solution to a linear system with the Stokes operator in the principal part”, J. Math. Sci. (N. Y.), 208:2 (2015), 151–159 | DOI | MR | Zbl

[11] V. B. Levenshtam, M. R. Ishmeev, “Asymptotic integration of linear system with high-frequency coefficients and Stokes operator in the main part”, Asymptot. Anal., 92:3-4 (2015), 363–376 | DOI | MR | Zbl

[12] M. A. Krasnosel'skii, P. P. Zabreiko, E. I. Pustyl'nik, P. E. Sobolevskii, Integral operators in spaces of summable functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leiden, 1976, xv+520 pp. | MR | MR | Zbl | Zbl

[13] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin; Academic Press, Inc., New York, 1965, xi+458 pp. | MR | MR | Zbl | Zbl