The first boundary-value problem for a~fractional diffusion-wave equation in a~non-cylindrical domain
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1212-1233
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve the first boundary-value problem in a non-cylindrical domain for
a diffusion-wave equation with the Dzhrbashyan–Nersesyan operator of fractional
differentiation with respect to the time variable. We prove an existence and
uniqueness theorem for this problem, and construct a representation of the solution.
We show that a sufficient condition for unique solubility is the condition
of Hölder smoothness for the lateral boundary of the domain.
The corresponding results for equations with Riemann–Liouville
and Caputo derivatives are particular cases of results obtained here.
Keywords:
first boundary-value problem, fractional derivative,
Dzhrbashyan–Nersesyan operator
Mots-clés : diffusion-wave equation, non-cylindrical domain.
Mots-clés : diffusion-wave equation, non-cylindrical domain.
@article{IM2_2017_81_6_a7,
author = {A. V. Pskhu},
title = {The first boundary-value problem for a~fractional diffusion-wave equation in a~non-cylindrical domain},
journal = {Izvestiya. Mathematics },
pages = {1212--1233},
publisher = {mathdoc},
volume = {81},
number = {6},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a7/}
}
TY - JOUR AU - A. V. Pskhu TI - The first boundary-value problem for a~fractional diffusion-wave equation in a~non-cylindrical domain JO - Izvestiya. Mathematics PY - 2017 SP - 1212 EP - 1233 VL - 81 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a7/ LA - en ID - IM2_2017_81_6_a7 ER -
A. V. Pskhu. The first boundary-value problem for a~fractional diffusion-wave equation in a~non-cylindrical domain. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1212-1233. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a7/