Mots-clés : soluble Lie group
@article{IM2_2017_81_6_a4,
author = {V. V. Gorbatsevich},
title = {Extension of transitive actions of {Lie} groups},
journal = {Izvestiya. Mathematics},
pages = {1143--1154},
year = {2017},
volume = {81},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a4/}
}
V. V. Gorbatsevich. Extension of transitive actions of Lie groups. Izvestiya. Mathematics, Tome 81 (2017) no. 6, pp. 1143-1154. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a4/
[1] A. L. Onishchik, Topology of transitive transformation groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994, xvi+300 pp. | MR | MR | Zbl | Zbl
[2] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras, v. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–235 | MR | MR | Zbl | Zbl
[3] M. V. Milovanov, “Extension of transformation groups of compact solvmanifolds”, Sb. Math., 206:4 (2015), 540–571 | DOI | DOI | MR | Zbl
[4] R. W. Johnson, “Presentation of solvmanifolds”, Amer. J. Math., 94 (1972), 82–102 | DOI | MR | Zbl
[5] L. Auslander, “An exposition of the structure of solvmanifolds. I. Algebraic theory”, Bull. Amer. Math. Soc., 79:2 (1973), 227–261 | DOI | MR | Zbl
[6] M. V. Milovanov, “A description of solvable Lie groups with a given uniform subgroup”, Math. USSR-Sb., 41:1 (1982), 83–99 | DOI | MR | Zbl
[7] F. P. Greenleaf, M. Moskovitz, L. P. Rothschild, “Compactness of certain homogeneous spaces of finite volume”, Amer. J. Math., 97 (1975), 248–259 | DOI | MR | Zbl