Extension of transitive actions of Lie groups
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1143-1154

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an algebraic construction of extensions of arbitrary transitive actions of soluble Lie groups on compact manifolds. The question of the possible dimensions of such extensions is studied in detail. We also consider some generalizations of this construction and the question of constructing extended transitive Lie group actions in some particular cases.
Keywords: homogeneous space, solvmanifold, nilmanifold, lattice.
Mots-clés : soluble Lie group
@article{IM2_2017_81_6_a4,
     author = {V. V. Gorbatsevich},
     title = {Extension of transitive actions of {Lie} groups},
     journal = {Izvestiya. Mathematics },
     pages = {1143--1154},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a4/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Extension of transitive actions of Lie groups
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1143
EP  - 1154
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a4/
LA  - en
ID  - IM2_2017_81_6_a4
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Extension of transitive actions of Lie groups
%J Izvestiya. Mathematics 
%D 2017
%P 1143-1154
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a4/
%G en
%F IM2_2017_81_6_a4
V. V. Gorbatsevich. Extension of transitive actions of Lie groups. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1143-1154. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a4/