Dicritical singularities and laminar currents on Levi-flat hypersurfaces
Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 1030-1043.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an effective criterion for a dicritical singularity of a real analytic Levi-flat hypersurface. The criterion is stated in terms of Segre varieties. As an application, we obtain a structure theorem for a certain class of currents in the non-dicritical case.
Keywords: Levi-flat set, dicritical singularity, current.
Mots-clés : foliation
@article{IM2_2017_81_5_a4,
     author = {S. I. Pinchuk and R. G. Shafikov and A. B. Sukhov},
     title = {Dicritical singularities and laminar currents on {Levi-flat} hypersurfaces},
     journal = {Izvestiya. Mathematics },
     pages = {1030--1043},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a4/}
}
TY  - JOUR
AU  - S. I. Pinchuk
AU  - R. G. Shafikov
AU  - A. B. Sukhov
TI  - Dicritical singularities and laminar currents on Levi-flat hypersurfaces
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1030
EP  - 1043
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a4/
LA  - en
ID  - IM2_2017_81_5_a4
ER  - 
%0 Journal Article
%A S. I. Pinchuk
%A R. G. Shafikov
%A A. B. Sukhov
%T Dicritical singularities and laminar currents on Levi-flat hypersurfaces
%J Izvestiya. Mathematics 
%D 2017
%P 1030-1043
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a4/
%G en
%F IM2_2017_81_5_a4
S. I. Pinchuk; R. G. Shafikov; A. B. Sukhov. Dicritical singularities and laminar currents on Levi-flat hypersurfaces. Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 1030-1043. http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a4/

[1] M. Brunella, “Singular Levi-flat hypersurfaces and codimension one foliations”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6:4 (2007), 661–672 | MR | Zbl

[2] M. Brunella, “Some remarks on meromorphic first integrals”, Enseign. Math. (2), 58:3-4 (2012), 315–324 | DOI | MR | Zbl

[3] D. Burns, Xianghong Gong, “Singular Levi-flat real analytic hypersurfaces”, Amer. J. Math., 121:1 (1999), 23–53 | DOI | MR | Zbl

[4] D. Cerveau, A. Lins Neto, “Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation”, Amer. J. Math., 133:3 (2011), 677–716 | DOI | MR | Zbl

[5] D. Cerveau, P. Sad, “Fonctions et feuilletages Levi-flat. Étude locale”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3:2 (2004), 427–445 | MR | Zbl

[6] A. Fernández-Pérez, “On Levi-flat hypersurfaces with generic real singular set”, J. Geom. Anal., 23:4 (2013), 2020–2033 | DOI | MR | Zbl

[7] J. Lebl, “Singular set of a Levi-flat hypersurface is Levi-flat”, Math. Ann., 355:3 (2013), 1177–1199 | DOI | MR | Zbl

[8] J. Lebl, A. Fernández-Pérez, Global and local aspects of Levi-flat hypersurfaces, Publ. Mat. IMPA, Inst. Nac. Mat. Pura Apl. (IMPA), Rio de Janeiro, 2015, x+65 pp. | MR | Zbl

[9] R. Shafikov, A. Sukhov, “Germs of singular Levi-flat hypersurfaces and holomorphic foliations”, Comment. Math. Helv., 90:2 (2015), 479–502 | DOI | MR | Zbl

[10] R. Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Math., 25, Springer-Verlag, Berlin–New York, 1966, iii+143 pp. | DOI | MR | Zbl

[11] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Ser.), 46, Kluwer Acad. Publ., Dordrecht, 1989, xx+372 pp. | DOI | MR | MR | Zbl | Zbl

[12] K. Diederich, S. Pinchuk, “The geometric reflection principle in several complex variables: a survey”, Complex Var. Elliptic Equ., 54:3-4 (2009), 223–241 | DOI | MR | Zbl

[13] J.-P. Demailly, Complex analytic and algebraic geometry, 2012, 455 pp. https://www-fourier.ujf-grenoble.fr/~demailly/books.html

[14] J.-P. Demailly, “Courants positifs extrêmaux et conjecture de Hodge”, Invent. Math., 69:3 (1982), 347–374 | DOI | MR | Zbl

[15] R. Dujardin, V. Guedj, “Geometric properties of maximal psh functions”, Complex Monge–Ampère equations and geodesics in the space of Kähler metrics, Lecture Notes in Math., 2038, Springer, Heidelberg, 2012, 33–52 | DOI | MR | Zbl

[16] J. E. Fornæss, N. Sibony, “Riemann surface laminations with singularities”, J. Geom. Anal., 18:2 (2008), 400–442 | DOI | MR | Zbl