Asymptotic behaviour and stability of solutions of a~singularly perturbed elliptic problem with a~triple root of the degenerate equation
Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 481-504.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and justify asymptotic expansions of solutions of a singularly perturbed elliptic problem with Dirichlet boundary conditions in the case when the corresponding degenerate equation has a triple root. In contrast to the case of a simple root, the expansion is with respect to fractional (non-integral) powers of the small parameter, the boundary-layer variables have another scaling, and the boundary layer has three zones. This gives rise to essential modifications in the algorithm for constructing the boundary functions. Solutions of the elliptic problem are stationary solutions of the corresponding parabolic problem. We prove that such a stationary solution is asymptotically stable and find its global domain of attraction.
Keywords: singularly perturbed elliptic problem, multiple root of the degenerate equation, three-zone boundary layer, stability of stationary solutions.
@article{IM2_2017_81_3_a1,
     author = {V. F. Butuzov},
     title = {Asymptotic behaviour and stability of solutions of a~singularly perturbed elliptic problem with a~triple root of the degenerate equation},
     journal = {Izvestiya. Mathematics },
     pages = {481--504},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a1/}
}
TY  - JOUR
AU  - V. F. Butuzov
TI  - Asymptotic behaviour and stability of solutions of a~singularly perturbed elliptic problem with a~triple root of the degenerate equation
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 481
EP  - 504
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a1/
LA  - en
ID  - IM2_2017_81_3_a1
ER  - 
%0 Journal Article
%A V. F. Butuzov
%T Asymptotic behaviour and stability of solutions of a~singularly perturbed elliptic problem with a~triple root of the degenerate equation
%J Izvestiya. Mathematics 
%D 2017
%P 481-504
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a1/
%G en
%F IM2_2017_81_3_a1
V. F. Butuzov. Asymptotic behaviour and stability of solutions of a~singularly perturbed elliptic problem with a~triple root of the degenerate equation. Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 481-504. http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a1/

[1] P. C. Fife, “Semilinear elliptic boundary value problems with small parameters”, Arch. Rational Mech. Anal., 52:3 (1973), 205–232 | DOI | MR | Zbl

[2] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shk., M., 1990, 208 pp. | MR | Zbl

[3] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl

[4] V. F. Butuzov, “On the special properties of the boundary layer in singularly perturbed problems with multiple root of the degenerate equation”, Math. Notes, 94:1 (2013), 60–70 | DOI | DOI | MR | Zbl

[5] V. A. Beloshapko, V. F. Butuzov, “A singularly perturbed elliptic problem in the case of a multiple root of the degenerate equation”, Comput. Math. Math. Phys., 53:8 (2013), 1117–1127 | DOI | DOI | MR | Zbl

[6] N. N. Nefedov, “The method of differential inequalities for some singularly perturbed partial differential equations”, Differ. Equ., 31:4 (1995), 668–671 | MR | Zbl

[7] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992, xvi+777 pp. | MR | Zbl