Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_3_a0, author = {A. Benkirane and M. El Moumni and A. Fri}, title = {Renormalized solutions of non-linear elliptic problems with three lower-order terms and $L^1$-data}, journal = {Izvestiya. Mathematics }, pages = {463--480}, publisher = {mathdoc}, volume = {81}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a0/} }
TY - JOUR AU - A. Benkirane AU - M. El Moumni AU - A. Fri TI - Renormalized solutions of non-linear elliptic problems with three lower-order terms and $L^1$-data JO - Izvestiya. Mathematics PY - 2017 SP - 463 EP - 480 VL - 81 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a0/ LA - en ID - IM2_2017_81_3_a0 ER -
%0 Journal Article %A A. Benkirane %A M. El Moumni %A A. Fri %T Renormalized solutions of non-linear elliptic problems with three lower-order terms and $L^1$-data %J Izvestiya. Mathematics %D 2017 %P 463-480 %V 81 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a0/ %G en %F IM2_2017_81_3_a0
A. Benkirane; M. El Moumni; A. Fri. Renormalized solutions of non-linear elliptic problems with three lower-order terms and $L^1$-data. Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 463-480. http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a0/
[1] R. J. DiPerna, P.-L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), 130:2 (1989), 321–366 | DOI | MR | Zbl
[2] P.-L. Lions, Mathematical topics in fluid mechanics, v. 1, Oxford Lecture Ser. Math. Appl., 3, Incompressible models, The Clarendon Press, Oxford Univ. Press, New York, 1996, xiv+237 pp. | MR | Zbl
[3] L. Boccardo, D. Giachetti, J. I. Diaz, F. Murat, “Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms”, J. Differential Equations, 106:2 (1993), 215–237 | DOI | MR | Zbl
[4] J. M. Rakotoson, “Uniqueness of renormalized solutions in a $T$-set for $L^1$-data problems and the link between various formulations”, Indiana Univ. Math. J., 43:2 (1994), 685–702 | DOI | MR | Zbl
[5] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, “Definition and existence of renormalized solutions of elliptic equations with general measure data”, C. R. Acad. Sci. Paris Sér. I Math., 325:5 (1997), 481–486 | DOI | MR | Zbl
[6] M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio, “Existence of renormalized solutions to nonlinear elliptic equations with lower-order term and right-hand side measure”, J. Math. Pures Appl. (9), 81:6 (2002), 533–566 | DOI | MR | Zbl
[7] G. Bottaro, M. E. Marina, “Problemi di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati”, Boll. Un. Mat. Ital. (4), 8 (1973), 46–56 | MR | Zbl
[8] T. Del Vecchio, M. M. Porzio, “Existence results for a class of non coercive Dirichlet problems”, Ricerche Mat., 44:2 (1995), 421–438 | MR | Zbl
[9] T. Del Vecchio, M. R. Posteraro, “An existence result for nonlinear and noncoercive problems”, Nonlinear Anal., 31:1-2 (1998), 191–206 | DOI | MR | Zbl
[10] A. Bensoussan, L. Boccardo, F. Murat, “On a nonlinear partial differential equation having natural growth terms and unbounded solution”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5:4 (1988), 347–364 | MR | Zbl
[11] H. Brezis, W. A. Strauss, “Semi-linear second-order elliptic equations in $L^1$”, J. Math. Soc. Japan, 25:4 (1973), 565–590 | DOI | MR | Zbl
[12] L. Boccardo, T. Gallou{e}t, “Strongly nonlinear elliptic equation having natural growth terms and $L^{1}$ data”, Nonlinear Anal., 19:6 (1992), 573–579 | DOI | MR | Zbl
[13] A. Porretta, “Existence for elliptic equations in $L^{1}$ having lower order terms with natural growth”, Portugal. Math., 57:2 (2000), 179–190 | MR | Zbl
[14] L. Boccardo, T. Gallou{e}t, “Nonlinear elliptic equations with right hand side measure”, Comm. Partial Differential Equations, 17:3-4 (1992), 641–655 | DOI | MR | Zbl
[15] T. del Vecchio, “Nonlinear elliptic equations with measure data”, Potential Anal., 4:2 (1995), 185–203 | DOI | MR | Zbl
[16] V. M. Monetti, L. Randazzo, “Existence results for nonlinear elliptic equations with $p$-growth in the gradient”, Ricerche Mat., 49:1 (2000), 163–181 | MR | Zbl
[17] M. El Moumni, “Entropy solution for strongly nonlinear elliptic problems with lower order terms and $L^1$-data”, An. Univ. Craiova Ser. Mat. Inform., 40:2 (2013), 211–225 | MR | Zbl
[18] A. Benkirane, J.-P. Gossez, “An approximation theorem in higher order Orlicz–Sobolev spaces and applications”, Studia Math., 92:3 (1989), 231–255 | MR | Zbl
[19] A. Youssfi, A. Benkirane, M. El Moumni, “Bounded solutions of unilateral problems for strongly nonlinear equations in Orlicz spaces”, Electron. J. Qual. Theory Differ. Equ., 2013 (2013), 21, 25 pp. | MR | Zbl
[20] A. Youssfi, A. Benkirane, M. El Moumni, “Existence result for strongly nonlinear elliptic unilateral problems with $L^1$ data”, Complex Var. Elliptic Equ., 59:4 (2014), 447-461 | DOI | MR | Zbl
[21] Y. Akdim, A. Benkirane, M. El Moumni, H. Redwane, “Existence of renormalized solutions for nonlinear parabolic equations”, J. Partial Differ. Equ., 27:1 (2014), 28–49 | MR | Zbl
[22] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl
[23] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl
[24] L. Boccardo, D. Giachetti, J. I. Diaz, F. Murat, “Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms”, J. Differential Equations, 106:2 (1993), 215–237 | DOI | MR | Zbl
[25] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl
[26] A. Alvino, G. Trombetti, “Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri”, Ricerche Mat., 27:2 (1978), 413–428 | MR | Zbl
[27] E. F. Beckenbach, R. Bellman, Inequalities, Ergeb. Math. Grenzgeb. (N.F.), 30, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1961, xii+198 pp. | MR | MR | Zbl | Zbl
[28] J.-P. Gossez, “A strongly nonlinear elliptic problem in Orlicz–Sobolev spaces”, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math., 45, Part 1, Amer. Math. Soc., Providence, RI, 1986, 455–462 | DOI | MR | Zbl
[29] A. Benkirane, A. Elmahi, “Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application”, Nonlinear Anal., 11:28 (1997), 1769–1784 | DOI | MR | Zbl