Arithmetic properties of polyadic series with periodic coefficients
Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 444-461.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study arithmetic properties of polyadic numbers, that is, series of the form $$ \sum_{n=0}^\infty a_n n!, $$ where the numbers $a_n\in\mathbb Z$ form a periodic sequence $\{a_n\}$.
Keywords: periodic sequence, transcendence, polyadic numbers.
@article{IM2_2017_81_2_a7,
     author = {V. G. Chirskii},
     title = {Arithmetic properties of polyadic series with periodic coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {444--461},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a7/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - Arithmetic properties of polyadic series with periodic coefficients
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 444
EP  - 461
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a7/
LA  - en
ID  - IM2_2017_81_2_a7
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T Arithmetic properties of polyadic series with periodic coefficients
%J Izvestiya. Mathematics 
%D 2017
%P 444-461
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a7/
%G en
%F IM2_2017_81_2_a7
V. G. Chirskii. Arithmetic properties of polyadic series with periodic coefficients. Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 444-461. http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a7/

[1] V. G. Chirskii, “Arithmetic properties of polyadic series with periodic coefficients”, Dokl. Math., 90:3 (2014), 766–768 | DOI | DOI | MR | Zbl

[2] A. G. Postnikov, Introduction to analytic number theory, Transl. Math. Monogr., 68, Amer. Math. Soc., Providence, RI, 1988, vi+320 pp. | MR | MR | Zbl | Zbl

[3] D. Kurepa, “On the left factorial function $!n$”, Math. Balkanica, 1 (1971), 147–153 | MR | Zbl

[4] V. G. Chirskii, V. Yu. Matveev, “O predstavleniyakh naturalnykh chisel”, Chebyshevskii sb., 14:1 (2013), 75–85 | MR

[5] V. G. Chirskii, “Arithmetic properties of certain polyadic series”, Moscow Univ. Math. Bull., 67:5-6 (2012), 228-229 | DOI | MR | Zbl

[6] A. B. Shidlovskii, Transcendental numbers, De Gruyter Stud. Math., 12, Walter de Gruyter Co., Berlin, 1989, xx+466 pp. | MR | MR | Zbl | Zbl

[7] V. G. Chirskii, V. Yu. Matveev, “O nekotorykh svoistvakh poliadicheskikh razlozhenii”, Chebyshevskii sb., 14:2 (2013), 164–172

[8] V. Kh. Salikhov, “The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations”, Math. Notes, 13:1 (1973), 19–25 | DOI | MR | Zbl

[9] D. Bertrand, V. Chirskii, Y. Yebbou, “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse Math. (6), 13:2 (2004), 241–260 | DOI | MR | Zbl