Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_2_a7, author = {V. G. Chirskii}, title = {Arithmetic properties of polyadic series with periodic coefficients}, journal = {Izvestiya. Mathematics }, pages = {444--461}, publisher = {mathdoc}, volume = {81}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a7/} }
V. G. Chirskii. Arithmetic properties of polyadic series with periodic coefficients. Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 444-461. http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a7/
[1] V. G. Chirskii, “Arithmetic properties of polyadic series with periodic coefficients”, Dokl. Math., 90:3 (2014), 766–768 | DOI | DOI | MR | Zbl
[2] A. G. Postnikov, Introduction to analytic number theory, Transl. Math. Monogr., 68, Amer. Math. Soc., Providence, RI, 1988, vi+320 pp. | MR | MR | Zbl | Zbl
[3] D. Kurepa, “On the left factorial function $!n$”, Math. Balkanica, 1 (1971), 147–153 | MR | Zbl
[4] V. G. Chirskii, V. Yu. Matveev, “O predstavleniyakh naturalnykh chisel”, Chebyshevskii sb., 14:1 (2013), 75–85 | MR
[5] V. G. Chirskii, “Arithmetic properties of certain polyadic series”, Moscow Univ. Math. Bull., 67:5-6 (2012), 228-229 | DOI | MR | Zbl
[6] A. B. Shidlovskii, Transcendental numbers, De Gruyter Stud. Math., 12, Walter de Gruyter Co., Berlin, 1989, xx+466 pp. | MR | MR | Zbl | Zbl
[7] V. G. Chirskii, V. Yu. Matveev, “O nekotorykh svoistvakh poliadicheskikh razlozhenii”, Chebyshevskii sb., 14:2 (2013), 164–172
[8] V. Kh. Salikhov, “The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations”, Math. Notes, 13:1 (1973), 19–25 | DOI | MR | Zbl
[9] D. Bertrand, V. Chirskii, Y. Yebbou, “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse Math. (6), 13:2 (2004), 241–260 | DOI | MR | Zbl