Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_2_a2, author = {A. A. Gal't}, title = {On the splitting of the normalizer of a~maximal torus in the exceptional linear algebraic groups}, journal = {Izvestiya. Mathematics }, pages = {269--285}, publisher = {mathdoc}, volume = {81}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a2/} }
TY - JOUR AU - A. A. Gal't TI - On the splitting of the normalizer of a~maximal torus in the exceptional linear algebraic groups JO - Izvestiya. Mathematics PY - 2017 SP - 269 EP - 285 VL - 81 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a2/ LA - en ID - IM2_2017_81_2_a2 ER -
A. A. Gal't. On the splitting of the normalizer of a~maximal torus in the exceptional linear algebraic groups. Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 269-285. http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a2/
[1] J. Tits, “Normalisateurs de tores. I. Groupes de Coxeter étendus”, J. Algebra, 4 (1966), 96–116 | DOI | MR | Zbl
[2] A. A. Gal't, “On the splitting of the normalizer of a maximal torus in symplectic groups”, Izv. Math., 78:3 (2014), 443–458 | DOI | DOI | MR | Zbl
[3] A. A. Galt, “On splitting of the normalizer of a maximal torus in linear groups”, J. Algebra Appl., 14:7 (2015), 1550114, 20 pp. | DOI | MR | Zbl
[4] A. A. Galt, “On splitting of the normalizer of a maximal torus in orthogonal groups”, J. Algebra Appl., 1750174 (to appear) , 23 pp., publ. online 2016 | DOI
[5] J. E. Humphreys, Linear algebraic groups, Grad. Texts Math., 21, Springer-Verlag, New York–Heidelberg, 1975, xiv+247 pp. | DOI | MR | MR | Zbl | Zbl
[6] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley Sons, London–New York–Sydney, 1972, viii+331 pp. | MR | Zbl
[7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham, 1985, xxxiv+252 pp. | MR | Zbl
[8] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, v. 3. Part I. Chapter A, Math. Surveys Monogr., 40.3, Almost simple $K$-groups, Amer. Math. Soc., Providence, RI, 1998, xvi+419 pp. | MR | Zbl