Asymptotic formulae for the second moments of $L$-series of holomorphic cusp forms on the critical line
Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 239-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new uniform asymptotic formulae for the second moments of $L$-series of cusp forms of even weight $2k\geqslant2$ with respect to the congruence subgroup $\Gamma_0(N)$.
Keywords: modular form, $L$-series of automorphic forms
Mots-clés : convolution formula.
@article{IM2_2017_81_2_a1,
     author = {V. A. Bykovskii and D. A. Frolenkov},
     title = {Asymptotic formulae for the second moments of $L$-series of holomorphic cusp forms on the critical line},
     journal = {Izvestiya. Mathematics },
     pages = {239--268},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a1/}
}
TY  - JOUR
AU  - V. A. Bykovskii
AU  - D. A. Frolenkov
TI  - Asymptotic formulae for the second moments of $L$-series of holomorphic cusp forms on the critical line
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 239
EP  - 268
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a1/
LA  - en
ID  - IM2_2017_81_2_a1
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%A D. A. Frolenkov
%T Asymptotic formulae for the second moments of $L$-series of holomorphic cusp forms on the critical line
%J Izvestiya. Mathematics 
%D 2017
%P 239-268
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a1/
%G en
%F IM2_2017_81_2_a1
V. A. Bykovskii; D. A. Frolenkov. Asymptotic formulae for the second moments of $L$-series of holomorphic cusp forms on the critical line. Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 239-268. http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a1/

[1] H. Iwaniec, E. Kowalski, Analytic number theory, Amer. Math. Soc. Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004, xii+615 pp. | DOI | MR | Zbl

[2] V. A. Bykovskii, D. A. Frolenkov, “O vtorom momente $L$-ryadov golomorfnykh parabolicheskikh form na kriticheskoi pryamoi”, Dokl. RAN, 463:2 (2015), 133–136 | MR | Zbl

[3] V. A. Bykovskii, “Formula sleda dlya skalyarnogo proizvedeniya ryadov Gekke i ee prilozheniya”, Zap. nauch. sem. POMI, 226 (1996), 14–36, POMI, SPb. ; V. A. Bykovskii, “A trace formula for the scalar product of Hecke series and its applications”, J. Math. Sci. (N. Y.), 89:1 (1998), 915–932 | MR | Zbl | DOI

[4] V. A. Bykovsky, “Hecke series values of holomorphic cusp forms in the centre of the critical strip”, Number theory in progress (Zakopane-Kościelisko, 1997), v. 2, de Gruyter, Berlin, 1999, 675–689 | MR | Zbl

[5] H. Iwaniec, P. Sarnak, “The non-vanishing of central values of automorphic $L$-functions and Landau–Siegel zeros”, Israel J. Math., 120, part A (2000), 155–177 | DOI | MR | Zbl

[6] A. Akbary, “Non-vanishing of weight $k$ modular $L$-functions with large level”, J. Ramanujan Math. Soc., 14:1 (1999), 37–54 | MR | Zbl

[7] Y. Kamiya, “Certain mean values and non-vanishing of automorphic $L$-functions with large level”, Acta Arith., 93:2 (2000), 157–176 | MR | Zbl

[8] A. Sankaranarayanan, “Mean-square upper bound of Hecke $L$-functions on the critical line”, Hardy–Ramanujan J., 26 (2003), 2–17 | MR | Zbl

[9] O. G. Balkanova, D. A. Frolenkov, “Ravnomernaya asimptoticheskaya formula dlya vtorogo momenta primitivnykh $L$-funktsii na kriticheskoi pryamoi”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Sbornik statei, Tr. MIAN, 294, MAIK, M., 2016, 20–53 | DOI

[10] W. Duke, “The critical order of vanishing of automorphic $L$-functions with large level”, Invent. Math., 119:1 (1995), 165–174 | DOI | MR | Zbl

[11] E. Kowalski, P. Michel, “A lower bound for the rank of $J_0(q)$”, Acta Arith., 94:4 (2000), 303–343 | MR | Zbl

[12] D. Rouymi, “Mollification et non annulation de fonctions $L$ automorphes en niveau primaire”, J. Number Theory, 132:1 (2012), 79–93 | DOI | MR | Zbl

[13] J. M. VanderKam, “The rank of quotients of $J_0(N)$”, Duke Math. J., 97:3 (1999), 545–577 | DOI | MR | Zbl

[14] H. M. Bui, “A note on the second moment of automorphic $L$-functions”, Mathematika, 56:1 (2010), 35–44 | DOI | MR | Zbl

[15] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, 2-e izd., Nauka, M., 1974, 295 pp. ; A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. pp. | MR | Zbl | MR | Zbl

[16] A. R. Booker, A. Strömbergsson, H. Then, “Bounds and algorithms for the $K$-Bessel function of imaginary order”, LMS J. Comput. Math., 16 (2013), 78–108 | DOI | MR | Zbl

[17] T. M. Dunster, “Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter”, Siam J. Math. Anal., 21:4 (1990), 995–1018 | DOI | MR | Zbl

[18] V. A. Bykovsky, N. V. Kuznetsov, A. I. Vinogradov, “Generalized summation formula for inhomogeneous convolution”, Automorphic functions and their applications (Khabarovsk, 1988), Acad. Sci. USSR, Inst. App. Math., Khabarovsk, 1990, 18–63 | MR | Zbl

[19] N. G. Chudakov, Vvedenie v teoriyu $L$-funktsii Dirikhle, OGIZ, M.–L., 1947, 203 pp. | MR | Zbl

[20] M. Katsurada, “On an asymptotic formula of Ramanujan for a certain theta-type series”, Acta Arith., 97:2 (2001), 157–172 | DOI | MR | Zbl

[21] R. B. Paris, D. Kaminski, Asymptotics and Mellin–Barnes integrals, Encyclopedia Math. Appl., 85, Cambridge Univ. Press, Cambridge, 2001, xvi+422 pp. | MR | Zbl

[22] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994, 376 pp. ; A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, De Gruyter Exp. Math., 5, Walter de Gruyter Co., Berlin, 1992, xii+396 pp. | MR | Zbl | DOI | MR | Zbl

[23] Y. Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts in Math., 127, Cambridge Univ. Press, Cambridge, 1997, x+228 pp. | MR | Zbl

[24] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, 4-e izd., Fizmatgiz, M., 1963, 1100 pp. ; I. S. Gradshteyn, I. M. Ryzhik, 5th ed., Academic Press, Inc., Boston, MA, 1994, xlviii+1204 pp. | MR | Zbl | MR | Zbl

[25] V. A. Bykovskii, D. A. Frolenkov, “Nekotorye integralnye predstavleniya dlya gipergeometricheskoi funktsii”, Dalnevost. matem. zhurn., 15:1 (2015), 38–40 | Zbl

[26] NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, Ch. W. Clark, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl