On Fourier coefficients of functions with respect to general orthonormal systems
Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 179-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present results describing some properties of the Fourier coefficients of functions with respect to general orthonormal systems (ONS). We note that good differential properties of the functions do not ensure the ‘good’ behaviour of the Fourier coefficients (in the sense of convergence to zero) of these functions with respect to general ONS. We find conditions on the functions $\varphi_n(x)$ forming an ONS ($\varphi_n(x))$, $n=1,2,\dots$, for which the series of Fourier coefficients of the functions $f(x)$, where $f'(x)\in V(0,1)$, are absolutely convergent. We consider relationships between ONS, that is, problems of absolute independence for orthonormal systems.
Keywords: absolute convergence, absolutely independent ONS.
Mots-clés : Fourier coefficients
@article{IM2_2017_81_1_a6,
     author = {V. Sh. Tsagareishvili},
     title = {On {Fourier} coefficients of functions with respect to general orthonormal systems},
     journal = {Izvestiya. Mathematics },
     pages = {179--198},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a6/}
}
TY  - JOUR
AU  - V. Sh. Tsagareishvili
TI  - On Fourier coefficients of functions with respect to general orthonormal systems
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 179
EP  - 198
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a6/
LA  - en
ID  - IM2_2017_81_1_a6
ER  - 
%0 Journal Article
%A V. Sh. Tsagareishvili
%T On Fourier coefficients of functions with respect to general orthonormal systems
%J Izvestiya. Mathematics 
%D 2017
%P 179-198
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a6/
%G en
%F IM2_2017_81_1_a6
V. Sh. Tsagareishvili. On Fourier coefficients of functions with respect to general orthonormal systems. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 179-198. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a6/

[1] S. Kaczmarz, H. Steinhaus, Theorie der Orthogonalreihen, Monografje Matematyczne, VI, New York, Chelsea Publishing Company, 1951, viii+296 pp. | MR | Zbl

[2] A. M. Olevskij, “Orthogonal series in a complete system”, Amer. Math. Soc. Transl. Ser. 2, 43, Amer. Math. Soc., Providence, RI, 1964, 91–138 | MR | Zbl

[3] V. Tsagareishvili, “Absolute convergence of the Fourier series and the Fourier–Haar coefficients”, Proc. A. Razmadze Math. Inst., 131 (2003), 79–99 | MR | Zbl

[4] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[5] N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., 65 (1949), 371–414 | DOI | MR | Zbl

[6] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem sb., 63(105):3 (1964), 356–391 | MR | Zbl

[7] V. Sh. Tsagareishvili, “On the structure of the class $A(\varphi)$”, Math. Notes, 80:2 (2006), 284–295 | DOI | DOI | MR | Zbl

[8] J. R. McLaughlin, “Integrated orthonormal series”, Pacific J. Math., 42:2 (1972), 469–475 | DOI | MR | Zbl