Big subsets with small boundaries in a~graph with a~vertex-transitive group of automorphisms
Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 137-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of ends of finitely generated groups $G$ and connected locally finite graphs $\Gamma$ with vertex-transitive groups of automorphisms can be regarded as a theory of Boolean algebras of subsets of $G$ or vertex set of $\Gamma$ with finite boundaries (in the locally finite Cayley graph of $G$ or in $\Gamma$ respectively), considered modulo finite subsets. We develop a more general theory where infinite subsets with finite boundaries are replaced by certain ‘big’ subsets with ‘small’ boundaries.
Keywords: graph, vertex-transitive group of automorphisms, end.
Mots-clés : group
@article{IM2_2017_81_1_a4,
     author = {N. Seifter and V. I. Trofimov},
     title = {Big subsets with small boundaries in a~graph with a~vertex-transitive group of automorphisms},
     journal = {Izvestiya. Mathematics },
     pages = {137--155},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a4/}
}
TY  - JOUR
AU  - N. Seifter
AU  - V. I. Trofimov
TI  - Big subsets with small boundaries in a~graph with a~vertex-transitive group of automorphisms
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 137
EP  - 155
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a4/
LA  - en
ID  - IM2_2017_81_1_a4
ER  - 
%0 Journal Article
%A N. Seifter
%A V. I. Trofimov
%T Big subsets with small boundaries in a~graph with a~vertex-transitive group of automorphisms
%J Izvestiya. Mathematics 
%D 2017
%P 137-155
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a4/
%G en
%F IM2_2017_81_1_a4
N. Seifter; V. I. Trofimov. Big subsets with small boundaries in a~graph with a~vertex-transitive group of automorphisms. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 137-155. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a4/

[1] H. Freudenthal, “Über die Enden topologischer Räume und Gruppen”, Math. Z., 33:1 (1931), 692–713 | DOI | MR | Zbl

[2] H. Freudenthal, “Über die Enden diskreten Räume und Gruppen”, Comment. Math. Helv., 17 (1945), 1–38 | DOI | MR | Zbl

[3] H. Hopf, “Enden offener Räume und unendliche diskontinuierliche Gruppen”, Comment. Math. Helv., 16 (1944), 81–100 | DOI | MR | Zbl

[4] J. Stallings, Group theory and three-dimensional manifolds, Yale Mathematical Monographs, 4, Yale Univ. Press, New Haven, Conn.–London, 1971, v+65 pp. | MR | Zbl

[5] M. J. Dunwoody, “Cutting up graphs”, Combinatorica, 2:1 (1982), 15–23 | DOI | MR | Zbl

[6] V. I. Trofimov, “Graphs with polynomial growth”, Math. USSR-Sb., 51:2 (1985), 405–417 | DOI | MR | Zbl

[7] S. Givant, P. Halmos, Introduction to Boolean algebras, Undergrad. Texts Math., Springer, New York, 2009, xiv+574 pp. | DOI | MR | Zbl