On the theory of the Frankl problem for equations of mixed type
Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 99-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1956 Frankl, while studying subsonic flows past a profile with a supersonic zone terminating with a normal compression shock, arrived at a new mathematical problem for the Chaplygin equation with a non-local boundary condition. In this article we give a survey of classical and recent papers dedicated to this problem. We present theorems on the existence and uniqueness of the solution of the Frankl problem, study the spectral problem for the Lavrent'ev–Bitsadze operator, show applications of these results to the construction of a solution with the aid of a series, and state some unsolved problems.
Keywords: equation of mixed type, Frankl problem, survey, uniqueness, existence, Frankl spectral problem, eigenfunctions, completeness, basis property.
@article{IM2_2017_81_1_a3,
     author = {K. B. Sabitov},
     title = {On the theory of the {Frankl} problem for equations of mixed type},
     journal = {Izvestiya. Mathematics },
     pages = {99--136},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a3/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - On the theory of the Frankl problem for equations of mixed type
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 99
EP  - 136
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a3/
LA  - en
ID  - IM2_2017_81_1_a3
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T On the theory of the Frankl problem for equations of mixed type
%J Izvestiya. Mathematics 
%D 2017
%P 99-136
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a3/
%G en
%F IM2_2017_81_1_a3
K. B. Sabitov. On the theory of the Frankl problem for equations of mixed type. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 99-136. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a3/

[1] F. I. Frankl, “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, PMM, 20:2 (1956), 196–202 | MR | Zbl

[2] A. V. Bitsadze, “Ob odnoi zadache Franklya”, Dokl. AN SSSR, 109:6 (1956), 1091–1094 | MR | Zbl

[3] A. V. Bitsadze, “O edinstvennosti resheniya zadachi Franklya dlya uravneniya Chaplygina”, Dokl. AN SSSR, 112:3 (1957), 375–376 | Zbl

[4] Yu. V. Devingtal, “O suschestvovanii resheniya odnoi zadachi F. I. Franklya”, Dokl. AN SSSR, 119:1 (1958), 15–18 | Zbl

[5] Yu. V. Devingtal, “O suschestvovanii i edinstvennosti resheniya odnoi zadachi F. I. Franklya”, Izv. vuzov. Matem., 1958, no. 2(3), 39–51 | MR | Zbl

[6] Yu. V. Devingtal, “K voprosu o suschestvovanii i edinstvennosti resheniya zadachi Franklya”, UMN, 14:1(85) (1959), 177–182 | MR | Zbl

[7] Lin Tszyan-bin, “O nekotorykh zadachakh Franklya”, Vestn. LGU. Ser. Matem. Mekh. Astron., 1961, no. 3(13), 28–39 | Zbl

[8] B. N. Burmistrov, “O zadache F. I. Franklya dlya odnoi sistemy uravnenii”, Trudy Vtoroi nauchnoi konferentsii matematicheskikh kafedr pedagogicheskikh institutov Povolzhya (Ulyanovsk, 1961), v. 1, 9-ya tip. im. Myagi obl. upr. kultury, Kuibyshev, 1962, 14–19

[9] I. V. Maiorov, “O printsipe ekstremuma dlya odnoi zadachi Franklya”, Sib. matem. zhurn., 7:5 (1966), 1068–1075 | MR | Zbl

[10] A. P. Soldatov, “A problem in function theory”, Differential Equations, 9 (1974), 248–253 | MR | Zbl

[11] A. P. Soldatov, “The solution of a boundary-value problem in the theory of functions with displacement”, Differential Equations, 10 (1975), 104–110 | MR | Zbl

[12] N. Yu. Kapustin, “O metode Moravets dlya dokazatelstva teoremy edinstvennosti reshenii nekotorykh kraevykh zadach dlya uravnenii smeshannogo tipa”, Prikladnaya matematika i matematicheskoe obespechenie EVM, Izd-vo MGU, M., 1981, 45–46

[13] K. B. Sabitov, “O edinstvennosti resheniya zadachi Franklya dlya uravnenii smeshannogo tipa”, Differents. uravneniya, 24:5 (1988), 904–906 | MR | Zbl

[14] B. N. Burmistrov, O nekotorykh kraevykh zadachakh tipa zadachi Franklya dlya sistem uravnenii 1-go poryadka smeshannogo tipa, Dis. $\dots$ kand. fiz.-matem. nauk, Kazan, 1970

[15] V. I. Zhegalov, “The Frankl' problem with a shift”, Soviet Math. (Iz. VUZ), 23:9 (1979), 10–19 | MR | Zbl

[16] V. I. Zhegalov, Issledovanie kraevykh zadach so smescheniyami dlya uravnenii smeshannogo tipa, Dis. $\dots$ dokt. fiz.-matem. nauk, Kazan, 1987, 297 pp.

[17] V. V. Klokov, “O edinstvennosti resheniya obobschennoi zadachi Franklya”, Tr. sem. po kraev. zadacham, 3, Izd-vo Kazanskogo un-ta, Kazan, 1966, 66–67 | MR

[18] I. V. Maiorov, “Ob odnoi zadache Franklya dlya nelineinogo uravneniya smeshannogo tipa”, Differents. uravneniya, 4:1 (1968), 46–51 | MR | Zbl

[19] E. I. Moiseev, “O reshenii zadachi Franklya v spetsialnoi oblasti”, Differents. uravneniya, 28:4 (1992), 721–723 | MR | Zbl

[20] E. I. Moiseev, N. Abbasi, “On the completeness of eigenfunctions of the Frankl problem with the oddness condition”, Differ. Equ., 44:3 (2008), 408–412 | DOI | MR | Zbl

[21] E. I. Moiseev, N. Abbasi, “On the basis property of eigenfunctions of the Frankl problem with a nonlocal parity condition”, Differ. Equ., 44:6 (2008), 855–860 | DOI | MR | Zbl

[22] E. I. Moiseev, N. Abbasi, “Basis property of the eigenfunctions of a generalized gasdynamic Frankl problem with a nonlocal evenness condition and with a discontinuity in the solution gradient”, Differ. Equ., 45:10 (2009), 1485–1490 | DOI | MR | Zbl

[23] E. I. Moiseev, V. E. Ambartsumyan, “On the basis property of eigenfunctions of the Frankl problem with a nonlocal parity condition of the second kind”, Differ. Equ., 45:12 (2009), 1769–1774 | DOI | MR | Zbl

[24] E. I. Moiseev, V. E. Ambartsumyan, “On the basis property of the eigenfunctions of the Frankl problem with nonlocal evenness and oddness conditions of the second kind”, Dokl. Math., 81:3 (2010), 429–433 | DOI | Zbl

[25] T. S. Kal'menov, The spectrum of Tricomi's problem for a Lavrentév–Bitsadze problem, 13 (1977), 984–989 | MR | Zbl

[26] E. I. Moiseev, Uravneniya smeshannogo tipa so spektralnym parametrom, Izd-vo Mosk. un-ta, M., 1988, 150 pp. | MR | Zbl

[27] S. M. Ponomarev, Spektralnaya teoriya osnovnoi kraevoi zadachi dlya uravneniya smeshannogo tipa Lavrenteva–Bitsadze, Dis. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1981, 163 pp.

[28] C. S. Morawetz, “Note on a maximun principle and a uniqueness theorem for an elliptic-hyperbolic equation”, Proc. Roy. Soc. London. Ser. A, 236:1204 (1956), 141–144 | DOI | MR | Zbl

[29] N. S. Nadirashvili, “On the question of the uniqueness of the solution of the second boundary value problem for second order elliptic equations”, Math. USSR-Sb., 50:2 (1985), 325–341 | DOI | MR | Zbl

[30] T. Carleman, “Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables independants”, Ark. Mat., Astr. Fys., 26:17 (1939), 1–9 | MR | Zbl

[31] I. N. Vekua, Generalized analytic functions, Pergamon Press, London–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962, xxix+668 pp. | MR | MR | Zbl | Zbl

[32] S. Stoilow, Teoria funcţiilor de o variabilă complexă, v. 1, Noţiuni şi principii fundamentale, Editura Academiei Republicii Populare Romîne, Bucharest, 1954, 308 pp. | MR | Zbl

[33] M. Morse, Topological methods in the theory of functions of a complex variable, Ann. of Math. Stud., 15, Princeton Univ. Press, Princeton, 1947, iv+146 pp. | DOI | Zbl

[34] E. F. Collingwood, A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Math. and Math. Phys., 56, Cambridge Univ. Press, Cambridge, 1966, xi+211 pp. | MR | MR | Zbl | Zbl

[35] V. A. Kondrat'ev, E. M. Landis, “Qualitative theory of second order linear partial differential equations”, Partial differential equations III, Encyclopaedia Math. Sci., 32, Springer, Berlin, 1991, 87–192 | MR | Zbl

[36] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for partial differential equations in non-smooth domains”, Russian Math. Surveys, 38:2 (1983), 1–66 | DOI | MR | Zbl

[37] L. V. Ovsyannikov, Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981, 368 pp. | MR | Zbl

[38] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., Nauka, M., 1986, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Parts I, II, III, Grad. Texts in Math., 93, 104, 124, Springer-Verlag, New York, 1984, 1985, 1990, xv+464 pp., xv+430 pp., x+416 с. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Part I, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 pp. ; Part II, Grad. Texts in Math., 104, 1985, xv+430 pp. ; Part III, Grad. Texts in Math., 124, 1990, x+416 pp. | MR | Zbl | MR | MR | MR | Zbl | Zbl | Zbl | Zbl

[39] G. G. Chernyi, Gazovaya dinamika, Nauka, M., 1988, 424 pp.

[40] K. I. Babenko, K teorii uravnenii smeshannogo tipa, Dis. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1952, 156 pp.

[41] A. M. Ezhov, S. P. Pul'kin, “An estimate for the solution of the Tricomi problem for a class of equation of mixed type”, Soviet Math. Dokl., 11 (1970), 1046–1049 | Zbl

[42] A. M. Nakhushev, K teorii lineinykh kraevykh zadach dlya giperbolicheskikh i smeshannykh uravnenii vtorogo poryadka, Dis. $\dots$ dokt. fiz.-matem. nauk, Novosibirsk, 1970

[43] M. M. Smirnov, Equations of mixed type, Transl. Math. Monogr., 51, Amer. Math. Soc., Providence, R.I., 1978, iii+232 pp. | MR | Zbl | Zbl

[44] N. Yu. Kapustin, K. B. Sabitov, “The Riccati equation in the theory of equations of mixed type”, Soviet Math. Dokl., 42:2 (1991), 641–645 | MR | Zbl

[45] N. Yu. Kapustin, K. B. Sabitov, “O roli uravneniya Rikkati v teorii okolozvukovykh gazodinamicheskikh techenii”, Matem. modelirovanie, 2:9 (1990), 105–113 | MR | Zbl

[46] N. Yu. Kapustin, K. B. Sabitov, “Solution of a problem in the theory of a Frankl's problem for equations of mixed type”, Differential Equations, 27:1 (1991), 47–54 | MR | Zbl

[47] N. Yu. Kapustin, K. B. Sabitov, “On the solution of a problem in the theory of the Frankl' problem for equations of mixed type”, Soviet Math. Dokl., 43:2 (1991), 584–588 | MR | Zbl

[48] K. B. Sabitov, “Maximum principle for an equation of mixed type”, Differential Equations, 24:11 (1989), 1322–1329 | MR | Zbl

[49] K. B. Sabitov, “An alternating method of Schwarz type in the theory of equations of mixed type”, Soviet Math. Dokl., 45:1 (1992), 136–140 | MR | Zbl

[50] K. B. Sabitov, “Existence of a solution of the Tricomi problem”, Differential Equations, 28:12 (1993), 1737–1745 | MR | Zbl

[51] K. B. Sabitov, N. G. Shmeleva, “Boundary value problems for a Lavrent'ev–Bitsadze equation with a complex parameter”, Russian Math. (Iz. VUZ), 47:3 (2003), 46–55 | MR | Zbl

[52] I. N. Vekua, “Obraschenie odnogo integralnogo preobrazovaniya i ego nekotorye primeneniya”, Soobsch. AN Gruz. SSR, VI:3 (1945), 177–183 | Zbl

[53] K. B. Sabitov, “Inversion of some integral equations of Volterra type”, Soviet Math. Dokl., 42:2 (1991), 460–463 | MR | Zbl

[54] A. V. Bitsadze, Some classes of partial differential equations, Adv. Stud. Contemp. Math., 4, Gordon and Breach Science Publishers, New York, 1988, xi+504 pp. ; 28, No 7, 1992 | MR | MR | Zbl | Zbl | MR | Zbl

[55] K. B. Sabitov, “Construction in explicit form of the solutions of the Darboux problem for the telegraph equation and their application to the treatment of integral equations. I”, Differential Equations, 26:6 (1990), 747–755 ; II, 28:7 (1992), 901–908 | MR | MR | Zbl | Zbl

[56] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 2, Special functions, Gordon and Breach Science Publishers, New York, 1986, 750 pp. | MR | Zbl | Zbl

[57] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl

[58] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp., xvii+396 pp. | MR | MR | Zbl | Zbl

[59] K. B. Sabitov, V. V. Tikhomirov, “O postroenii sobstvennykh znachenii i funktsii odnoi gazodinamicheskoi zadachi Franklya”, Matem. modelirovanie, 2:10 (1990), 100–109 | MR | Zbl

[60] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44 | DOI | MR | Zbl

[61] A. A. Shkalikov, “Boundary value problems for ordinary differential equations with parameter in the boundary conditions”, J. Soviet Math., 33:6 (1986), 1311–1342 | DOI | MR | Zbl

[62] E. I. Moiseev, “O bazisnosti odnoi sistemy sinusov”, Differents. uravneniya, 23:1 (1987), 177–179 | MR | Zbl

[63] E. I. Moiseev, “On the basis property of systems of sines and cosines”, Soviet Math. Dokl., 29 (1984), 296–300 | MR | Zbl

[64] K. B. Sabitov, “On the spectrum of a gas dynamics problem of Frankl' for equations of mixed type”, Soviet Math. Dokl., 43:1 (1991), 35–38 | Zbl