Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_1_a3, author = {K. B. Sabitov}, title = {On the theory of the {Frankl} problem for equations of mixed type}, journal = {Izvestiya. Mathematics }, pages = {99--136}, publisher = {mathdoc}, volume = {81}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a3/} }
K. B. Sabitov. On the theory of the Frankl problem for equations of mixed type. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 99-136. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a3/
[1] F. I. Frankl, “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, PMM, 20:2 (1956), 196–202 | MR | Zbl
[2] A. V. Bitsadze, “Ob odnoi zadache Franklya”, Dokl. AN SSSR, 109:6 (1956), 1091–1094 | MR | Zbl
[3] A. V. Bitsadze, “O edinstvennosti resheniya zadachi Franklya dlya uravneniya Chaplygina”, Dokl. AN SSSR, 112:3 (1957), 375–376 | Zbl
[4] Yu. V. Devingtal, “O suschestvovanii resheniya odnoi zadachi F. I. Franklya”, Dokl. AN SSSR, 119:1 (1958), 15–18 | Zbl
[5] Yu. V. Devingtal, “O suschestvovanii i edinstvennosti resheniya odnoi zadachi F. I. Franklya”, Izv. vuzov. Matem., 1958, no. 2(3), 39–51 | MR | Zbl
[6] Yu. V. Devingtal, “K voprosu o suschestvovanii i edinstvennosti resheniya zadachi Franklya”, UMN, 14:1(85) (1959), 177–182 | MR | Zbl
[7] Lin Tszyan-bin, “O nekotorykh zadachakh Franklya”, Vestn. LGU. Ser. Matem. Mekh. Astron., 1961, no. 3(13), 28–39 | Zbl
[8] B. N. Burmistrov, “O zadache F. I. Franklya dlya odnoi sistemy uravnenii”, Trudy Vtoroi nauchnoi konferentsii matematicheskikh kafedr pedagogicheskikh institutov Povolzhya (Ulyanovsk, 1961), v. 1, 9-ya tip. im. Myagi obl. upr. kultury, Kuibyshev, 1962, 14–19
[9] I. V. Maiorov, “O printsipe ekstremuma dlya odnoi zadachi Franklya”, Sib. matem. zhurn., 7:5 (1966), 1068–1075 | MR | Zbl
[10] A. P. Soldatov, “A problem in function theory”, Differential Equations, 9 (1974), 248–253 | MR | Zbl
[11] A. P. Soldatov, “The solution of a boundary-value problem in the theory of functions with displacement”, Differential Equations, 10 (1975), 104–110 | MR | Zbl
[12] N. Yu. Kapustin, “O metode Moravets dlya dokazatelstva teoremy edinstvennosti reshenii nekotorykh kraevykh zadach dlya uravnenii smeshannogo tipa”, Prikladnaya matematika i matematicheskoe obespechenie EVM, Izd-vo MGU, M., 1981, 45–46
[13] K. B. Sabitov, “O edinstvennosti resheniya zadachi Franklya dlya uravnenii smeshannogo tipa”, Differents. uravneniya, 24:5 (1988), 904–906 | MR | Zbl
[14] B. N. Burmistrov, O nekotorykh kraevykh zadachakh tipa zadachi Franklya dlya sistem uravnenii 1-go poryadka smeshannogo tipa, Dis. $\dots$ kand. fiz.-matem. nauk, Kazan, 1970
[15] V. I. Zhegalov, “The Frankl' problem with a shift”, Soviet Math. (Iz. VUZ), 23:9 (1979), 10–19 | MR | Zbl
[16] V. I. Zhegalov, Issledovanie kraevykh zadach so smescheniyami dlya uravnenii smeshannogo tipa, Dis. $\dots$ dokt. fiz.-matem. nauk, Kazan, 1987, 297 pp.
[17] V. V. Klokov, “O edinstvennosti resheniya obobschennoi zadachi Franklya”, Tr. sem. po kraev. zadacham, 3, Izd-vo Kazanskogo un-ta, Kazan, 1966, 66–67 | MR
[18] I. V. Maiorov, “Ob odnoi zadache Franklya dlya nelineinogo uravneniya smeshannogo tipa”, Differents. uravneniya, 4:1 (1968), 46–51 | MR | Zbl
[19] E. I. Moiseev, “O reshenii zadachi Franklya v spetsialnoi oblasti”, Differents. uravneniya, 28:4 (1992), 721–723 | MR | Zbl
[20] E. I. Moiseev, N. Abbasi, “On the completeness of eigenfunctions of the Frankl problem with the oddness condition”, Differ. Equ., 44:3 (2008), 408–412 | DOI | MR | Zbl
[21] E. I. Moiseev, N. Abbasi, “On the basis property of eigenfunctions of the Frankl problem with a nonlocal parity condition”, Differ. Equ., 44:6 (2008), 855–860 | DOI | MR | Zbl
[22] E. I. Moiseev, N. Abbasi, “Basis property of the eigenfunctions of a generalized gasdynamic Frankl problem with a nonlocal evenness condition and with a discontinuity in the solution gradient”, Differ. Equ., 45:10 (2009), 1485–1490 | DOI | MR | Zbl
[23] E. I. Moiseev, V. E. Ambartsumyan, “On the basis property of eigenfunctions of the Frankl problem with a nonlocal parity condition of the second kind”, Differ. Equ., 45:12 (2009), 1769–1774 | DOI | MR | Zbl
[24] E. I. Moiseev, V. E. Ambartsumyan, “On the basis property of the eigenfunctions of the Frankl problem with nonlocal evenness and oddness conditions of the second kind”, Dokl. Math., 81:3 (2010), 429–433 | DOI | Zbl
[25] T. S. Kal'menov, The spectrum of Tricomi's problem for a Lavrentév–Bitsadze problem, 13 (1977), 984–989 | MR | Zbl
[26] E. I. Moiseev, Uravneniya smeshannogo tipa so spektralnym parametrom, Izd-vo Mosk. un-ta, M., 1988, 150 pp. | MR | Zbl
[27] S. M. Ponomarev, Spektralnaya teoriya osnovnoi kraevoi zadachi dlya uravneniya smeshannogo tipa Lavrenteva–Bitsadze, Dis. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1981, 163 pp.
[28] C. S. Morawetz, “Note on a maximun principle and a uniqueness theorem for an elliptic-hyperbolic equation”, Proc. Roy. Soc. London. Ser. A, 236:1204 (1956), 141–144 | DOI | MR | Zbl
[29] N. S. Nadirashvili, “On the question of the uniqueness of the solution of the second boundary value problem for second order elliptic equations”, Math. USSR-Sb., 50:2 (1985), 325–341 | DOI | MR | Zbl
[30] T. Carleman, “Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables independants”, Ark. Mat., Astr. Fys., 26:17 (1939), 1–9 | MR | Zbl
[31] I. N. Vekua, Generalized analytic functions, Pergamon Press, London–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962, xxix+668 pp. | MR | MR | Zbl | Zbl
[32] S. Stoilow, Teoria funcţiilor de o variabilă complexă, v. 1, Noţiuni şi principii fundamentale, Editura Academiei Republicii Populare Romîne, Bucharest, 1954, 308 pp. | MR | Zbl
[33] M. Morse, Topological methods in the theory of functions of a complex variable, Ann. of Math. Stud., 15, Princeton Univ. Press, Princeton, 1947, iv+146 pp. | DOI | Zbl
[34] E. F. Collingwood, A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Math. and Math. Phys., 56, Cambridge Univ. Press, Cambridge, 1966, xi+211 pp. | MR | MR | Zbl | Zbl
[35] V. A. Kondrat'ev, E. M. Landis, “Qualitative theory of second order linear partial differential equations”, Partial differential equations III, Encyclopaedia Math. Sci., 32, Springer, Berlin, 1991, 87–192 | MR | Zbl
[36] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for partial differential equations in non-smooth domains”, Russian Math. Surveys, 38:2 (1983), 1–66 | DOI | MR | Zbl
[37] L. V. Ovsyannikov, Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981, 368 pp. | MR | Zbl
[38] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., Nauka, M., 1986, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Parts I, II, III, Grad. Texts in Math., 93, 104, 124, Springer-Verlag, New York, 1984, 1985, 1990, xv+464 pp., xv+430 pp., x+416 с. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Part I, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 pp. ; Part II, Grad. Texts in Math., 104, 1985, xv+430 pp. ; Part III, Grad. Texts in Math., 124, 1990, x+416 pp. | MR | Zbl | MR | MR | MR | Zbl | Zbl | Zbl | Zbl
[39] G. G. Chernyi, Gazovaya dinamika, Nauka, M., 1988, 424 pp.
[40] K. I. Babenko, K teorii uravnenii smeshannogo tipa, Dis. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1952, 156 pp.
[41] A. M. Ezhov, S. P. Pul'kin, “An estimate for the solution of the Tricomi problem for a class of equation of mixed type”, Soviet Math. Dokl., 11 (1970), 1046–1049 | Zbl
[42] A. M. Nakhushev, K teorii lineinykh kraevykh zadach dlya giperbolicheskikh i smeshannykh uravnenii vtorogo poryadka, Dis. $\dots$ dokt. fiz.-matem. nauk, Novosibirsk, 1970
[43] M. M. Smirnov, Equations of mixed type, Transl. Math. Monogr., 51, Amer. Math. Soc., Providence, R.I., 1978, iii+232 pp. | MR | Zbl | Zbl
[44] N. Yu. Kapustin, K. B. Sabitov, “The Riccati equation in the theory of equations of mixed type”, Soviet Math. Dokl., 42:2 (1991), 641–645 | MR | Zbl
[45] N. Yu. Kapustin, K. B. Sabitov, “O roli uravneniya Rikkati v teorii okolozvukovykh gazodinamicheskikh techenii”, Matem. modelirovanie, 2:9 (1990), 105–113 | MR | Zbl
[46] N. Yu. Kapustin, K. B. Sabitov, “Solution of a problem in the theory of a Frankl's problem for equations of mixed type”, Differential Equations, 27:1 (1991), 47–54 | MR | Zbl
[47] N. Yu. Kapustin, K. B. Sabitov, “On the solution of a problem in the theory of the Frankl' problem for equations of mixed type”, Soviet Math. Dokl., 43:2 (1991), 584–588 | MR | Zbl
[48] K. B. Sabitov, “Maximum principle for an equation of mixed type”, Differential Equations, 24:11 (1989), 1322–1329 | MR | Zbl
[49] K. B. Sabitov, “An alternating method of Schwarz type in the theory of equations of mixed type”, Soviet Math. Dokl., 45:1 (1992), 136–140 | MR | Zbl
[50] K. B. Sabitov, “Existence of a solution of the Tricomi problem”, Differential Equations, 28:12 (1993), 1737–1745 | MR | Zbl
[51] K. B. Sabitov, N. G. Shmeleva, “Boundary value problems for a Lavrent'ev–Bitsadze equation with a complex parameter”, Russian Math. (Iz. VUZ), 47:3 (2003), 46–55 | MR | Zbl
[52] I. N. Vekua, “Obraschenie odnogo integralnogo preobrazovaniya i ego nekotorye primeneniya”, Soobsch. AN Gruz. SSR, VI:3 (1945), 177–183 | Zbl
[53] K. B. Sabitov, “Inversion of some integral equations of Volterra type”, Soviet Math. Dokl., 42:2 (1991), 460–463 | MR | Zbl
[54] A. V. Bitsadze, Some classes of partial differential equations, Adv. Stud. Contemp. Math., 4, Gordon and Breach Science Publishers, New York, 1988, xi+504 pp. ; 28, No 7, 1992 | MR | MR | Zbl | Zbl | MR | Zbl
[55] K. B. Sabitov, “Construction in explicit form of the solutions of the Darboux problem for the telegraph equation and their application to the treatment of integral equations. I”, Differential Equations, 26:6 (1990), 747–755 ; II, 28:7 (1992), 901–908 | MR | MR | Zbl | Zbl
[56] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 2, Special functions, Gordon and Breach Science Publishers, New York, 1986, 750 pp. | MR | Zbl | Zbl
[57] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl
[58] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp., xvii+396 pp. | MR | MR | Zbl | Zbl
[59] K. B. Sabitov, V. V. Tikhomirov, “O postroenii sobstvennykh znachenii i funktsii odnoi gazodinamicheskoi zadachi Franklya”, Matem. modelirovanie, 2:10 (1990), 100–109 | MR | Zbl
[60] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44 | DOI | MR | Zbl
[61] A. A. Shkalikov, “Boundary value problems for ordinary differential equations with parameter in the boundary conditions”, J. Soviet Math., 33:6 (1986), 1311–1342 | DOI | MR | Zbl
[62] E. I. Moiseev, “O bazisnosti odnoi sistemy sinusov”, Differents. uravneniya, 23:1 (1987), 177–179 | MR | Zbl
[63] E. I. Moiseev, “On the basis property of systems of sines and cosines”, Soviet Math. Dokl., 29 (1984), 296–300 | MR | Zbl
[64] K. B. Sabitov, “On the spectrum of a gas dynamics problem of Frankl' for equations of mixed type”, Soviet Math. Dokl., 43:1 (1991), 35–38 | Zbl