Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_1_a0, author = {E. I. Berezhnoi}, title = {A discrete version of local {Morrey} spaces}, journal = {Izvestiya. Mathematics }, pages = {1--28}, publisher = {mathdoc}, volume = {81}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a0/} }
E. I. Berezhnoi. A discrete version of local Morrey spaces. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a0/
[1] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl
[2] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl
[3] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl
[4] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl
[5] A. Gogatishvili, R. Mustafayev, “Dual spaces of local Morrey-type spaces”, Czechoslovak Math. J., 61(136):3 (2011), 609–622 | DOI | MR | Zbl
[6] A. Gogatishvili, R. Ch. Mustafayev, “New characterization of Morrey spaces”, Eurasian Math. J., 4:1 (2013), 54–64 | MR | Zbl
[7] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, R.I., 1982, xii+375 pp. | MR | MR | Zbl | Zbl
[8] E. I. Berezhnoĭ, “On a theorem of G. Ya. Lozanovskiǐ”, Soviet Math. (Iz. VUZ), 26:2 (1982), 107–111 | MR | Zbl
[9] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. I, II, Ergeb. Math. Grenzgeb., 92, 97, Springer-Verlag, Berlin–New York, 1977, 1979, xiii+188 pp., x+243 pp. | MR | MR | Zbl
[10] O. Blasco, A. Ruiz, L. Vega, “Non interpolation in Morrey–Companato and block spaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 31–40 | MR | Zbl
[11] A. Ruiz, L. Vega, “Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation of Morrey spaces”, Publ. Mat., 39:2 (1995), 405–411 | DOI | MR | Zbl
[12] V. I. Burenkov, E. D. Nursultanov, D. K. Chigambayeva, “Description of the interpolation spaces for a pair of local Morrey-type spaces and their generalizations”, Proc. Steklov Inst. Math., 284 (2014), 97–128 | DOI | DOI | Zbl
[13] V. I. Burenkov, E. D. Nursultanov, “Description of interpolation spaces for local Morrey-type spaces”, Proc. Steklov Inst. Math., 269 (2010), 46–56 | DOI | MR | Zbl
[14] E. I. Berezhnoĭ, “Approximation spaces and interpolation”, Soviet Math. Dokl., 22 (1980), 800–803 | MR | Zbl
[15] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | MR | MR | Zbl
[16] Yu. A. Brudnyi, N. Ya. Krugljak, Interpolation functors and interpolation spaces, v. I, North-Holland Math. Library, 47, North-Holland Publishing Co., Amsterdam, 1991, xvi+718 pp. | MR | Zbl
[17] L. Maligranda, “Calderón–Lozanovskii construction for mixed norm spaces”, Acta Math. Hungar., 103:4 (2004), 279–302 | DOI | MR | Zbl
[18] E. I. Berezhnoi, “Ob interpolyatsii polozhitelnykh operatorov v prostranstve $\varphi(X_0, X_1)$”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, Izd-vo Yarosl. gos. un-ta, Yaroslavl, 1981, 3–12