Nuttall's Abelian integral on the Riemann surface of the cube root of a~polynomial of degree~3
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 997-1034.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the field of orthogonal trajectories of a quadratic differential on the three-sheeted Riemann surface of the cube root of a polynomial of degree 3. These trajectories coincide globally with the level lines of the velocity potential of an incompressible fluid flowing to the surface through the infinitely remote point on one sheet and flowing out through the infinitely remote point on another. The statement of the problem is motivated by the task of finding the distribution of the poles of the Hermite–Padé approximants for two analytic functions with three common branch points, which is in its turn related to Nuttall's general conjecture.
Keywords: algebraic functions, Riemann surfaces, trajectories of quadratic differentials, Hermite–Padé approximants.
@article{IM2_2016_80_6_a1,
     author = {A. I. Aptekarev and D. N. Tulyakov},
     title = {Nuttall's {Abelian} integral on the {Riemann} surface of the cube root of a~polynomial of degree~3},
     journal = {Izvestiya. Mathematics },
     pages = {997--1034},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a1/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - D. N. Tulyakov
TI  - Nuttall's Abelian integral on the Riemann surface of the cube root of a~polynomial of degree~3
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 997
EP  - 1034
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a1/
LA  - en
ID  - IM2_2016_80_6_a1
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A D. N. Tulyakov
%T Nuttall's Abelian integral on the Riemann surface of the cube root of a~polynomial of degree~3
%J Izvestiya. Mathematics 
%D 2016
%P 997-1034
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a1/
%G en
%F IM2_2016_80_6_a1
A. I. Aptekarev; D. N. Tulyakov. Nuttall's Abelian integral on the Riemann surface of the cube root of a~polynomial of degree~3. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 997-1034. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a1/

[1] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[2] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl

[3] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I, II”, Constr. Approx., 2:1 (1986), 225–240, 241–251 | DOI | DOI | MR | Zbl

[4] A. I. Aptekarev, D. N. Tulyakov, “Geometry of Hermite–Padé approximants for system of functions $\{f,f^2\}$ with three branch points”, Preprinty IPM im. M. V. Keldysha, 2012, 077, 25 pp.

[5] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N.F.), 18, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, vi+169 pp. | MR | Zbl | Zbl

[6] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer-Verlag, Berlin, 2002, x+211 pp. | DOI | MR | Zbl

[7] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl