Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_6_a1, author = {A. I. Aptekarev and D. N. Tulyakov}, title = {Nuttall's {Abelian} integral on the {Riemann} surface of the cube root of a~polynomial of degree~3}, journal = {Izvestiya. Mathematics }, pages = {997--1034}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a1/} }
TY - JOUR AU - A. I. Aptekarev AU - D. N. Tulyakov TI - Nuttall's Abelian integral on the Riemann surface of the cube root of a~polynomial of degree~3 JO - Izvestiya. Mathematics PY - 2016 SP - 997 EP - 1034 VL - 80 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a1/ LA - en ID - IM2_2016_80_6_a1 ER -
%0 Journal Article %A A. I. Aptekarev %A D. N. Tulyakov %T Nuttall's Abelian integral on the Riemann surface of the cube root of a~polynomial of degree~3 %J Izvestiya. Mathematics %D 2016 %P 997-1034 %V 80 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a1/ %G en %F IM2_2016_80_6_a1
A. I. Aptekarev; D. N. Tulyakov. Nuttall's Abelian integral on the Riemann surface of the cube root of a~polynomial of degree~3. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 997-1034. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a1/
[1] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[2] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl
[3] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I, II”, Constr. Approx., 2:1 (1986), 225–240, 241–251 | DOI | DOI | MR | Zbl
[4] A. I. Aptekarev, D. N. Tulyakov, “Geometry of Hermite–Padé approximants for system of functions $\{f,f^2\}$ with three branch points”, Preprinty IPM im. M. V. Keldysha, 2012, 077, 25 pp.
[5] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N.F.), 18, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, vi+169 pp. | MR | Zbl | Zbl
[6] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer-Verlag, Berlin, 2002, x+211 pp. | DOI | MR | Zbl
[7] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl