An old letter from J.~Tate to B.~Dwork, as~viewed recently by J.~Tate and B.~Mazur
Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 954-957.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the constant $C$, which is defined in the letter for a fixed ordinary elliptic curve, is viewed as a special value of formal function on a vast ind-profinite “Galois cover of the ‘Hasse Domain’ ” $H$ parametrizing all ordinary elliptic curves, viewed as a formal scheme.
Keywords: discrete valuation ring, elliptic curve, cover.
Mots-clés : Hasse invariant, Frobenius endomorphism
@article{IM2_2016_80_5_a6,
     author = {J. Tate},
     title = {An old letter from {J.~Tate} to {B.~Dwork,} as~viewed recently by {J.~Tate} and {B.~Mazur}},
     journal = {Izvestiya. Mathematics },
     pages = {954--957},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a6/}
}
TY  - JOUR
AU  - J. Tate
TI  - An old letter from J.~Tate to B.~Dwork, as~viewed recently by J.~Tate and B.~Mazur
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 954
EP  - 957
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a6/
LA  - en
ID  - IM2_2016_80_5_a6
ER  - 
%0 Journal Article
%A J. Tate
%T An old letter from J.~Tate to B.~Dwork, as~viewed recently by J.~Tate and B.~Mazur
%J Izvestiya. Mathematics 
%D 2016
%P 954-957
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a6/
%G en
%F IM2_2016_80_5_a6
J. Tate. An old letter from J.~Tate to B.~Dwork, as~viewed recently by J.~Tate and B.~Mazur. Izvestiya. Mathematics , Tome 80 (2016) no. 5, pp. 954-957. http://geodesic.mathdoc.fr/item/IM2_2016_80_5_a6/

[1] M. Lazard, “Sur les groupes de Lie formels à un paramètre”, Bull. Soc. Math. France, 83 (1955), 251–274 | MR | Zbl

[2] J. Lubin, J. Tate, “Formal moduli for one-parameter formal Lie groups”, Bull. Soc. Math. France, 94 (1966), 49–59 | MR | Zbl

[3] B. Dwork, “On the Tate constant”, Compositio Math., 61:1 (1987), 43–59 | MR | Zbl

[4] B. Dwork, “A deformation theory for the zeta function of a hypersurface”, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 247–259 | MR | Zbl