Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$
Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 791-810.

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the rational homology groups of spaces of non-resultant (that is, having no non-trivial common zeros) systems of homogeneous quadratic polynomials in $\mathbb R^3$.
Keywords: resultant, cohomology, simplicial resolution
Mots-clés : configuration space.
@article{IM2_2016_80_4_a8,
     author = {V. A. Vassiliev},
     title = {Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$},
     journal = {Izvestiya. Mathematics },
     pages = {791--810},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a8/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 791
EP  - 810
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a8/
LA  - en
ID  - IM2_2016_80_4_a8
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$
%J Izvestiya. Mathematics 
%D 2016
%P 791-810
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a8/
%G en
%F IM2_2016_80_4_a8
V. A. Vassiliev. Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$. Izvestiya. Mathematics , Tome 80 (2016) no. 4, pp. 791-810. http://geodesic.mathdoc.fr/item/IM2_2016_80_4_a8/

[1] S. Smale, “Mathematical problems for the next century”, Math. Intelligencer, 20:2 (1998), 7–15 | DOI | MR | Zbl

[2] L. Blum, M. Shub, S. Smale, “On a theory of computation and complexity over the real numbers: $NP$-completeness, recursive functions and universal machines”, Bull. Amer. Math. Soc., 21:1 (1989), 1–46 | DOI | MR | Zbl

[3] M. Shub, S. Smale, “On the intractability of Hilbert's Nullstellensatz and an algebraic version of "$NP \neq P$?”, Duke Math. J., 81:1 (1995), 47–54 | DOI | MR | Zbl

[4] F. R. Cohen, R. L. Cohen, B. M. Mann, R. J. Milgram, “The topology of rational functions and divisors of surfaces”, Acta Math., 166:1 (1991), 163–221 | DOI | MR | Zbl

[5] A. Kozlowski, K. Yamaguchi, “Topology of complements of discriminants and resultants”, J. Math. Soc. Japan, 52:4 (2000), 949–959 | DOI | MR | Zbl

[6] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Transl. Math. Monogr., 98, rev. ed., Amer. Math. Soc., Providence, RI, 1994, vi+208 pp. | MR | Zbl

[7] V. A. Vassiliev, “Homology of spaces of non-resultant homogeneous polynomial systems in $\mathbb R^2$ and $\mathbb C^2$”, Arnold Math. J., 1:3 (2015), 233–242 ; arXiv: 1409.6005 | DOI | MR | Zbl

[8] V. I. Arnol'd, “On some topological invariants of algebraic functions”, Trans. Moscow Math. Soc., 21, Amer. Math. Soc., Providence, RI, 1971, 30–52 | MR | Zbl

[9] A. Borel, J.-P. Serre, “Cohomologie d'immeubles et de groupes $s$-arithmétiques”, Topology, 15:3 (1976), 211–232 | DOI | MR | Zbl

[10] V. A. Vasilev, Topologiya dopolnenii k diskriminantam, M., Fazis, 1997, xiv+536 pp. | MR

[11] A. G. Gorinov, “Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb{CP}^2$”, Ann. Fac. Sci. Toulouse Math. (6), 14:3 (2005), 395–434 ; arXiv: math/0105108 | DOI | MR | Zbl

[12] O. Tommasi, Geometry of discriminants and cohomology of moduli spaces, Dissertation, Radboud Universiteit, Nijmegen, 2005, 89 pp. \kern70pt\break http://repository.ubn.ru.nl/handle/2066/27027

[13] V. A. Vassiliev, “How to calculate homology groups of spaces of nonsingular algebraic projective hypersurfaces”, Proc. Steklov Inst. Math., 225 (1999), 121–140 ; arXiv: 1407.7229 | MR | Zbl

[14] A. Bahri, J. M. Coron, “On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain”, Comm. Pure Appl. Math., 41:3 (1988), 253–294 | DOI | MR | Zbl

[15] V. A. Vassiliev, “Stable cohomologies of the complements of the discriminants of deformations of singularities of smooth functions”, J. Soviet Math., 52:4 (1990), 3217–3230 | DOI | MR | Zbl

[16] V. A. Vassiliev, “Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in $\mathbb R^3$”, Proc. Steklov Inst. Math., 290:1 (2015), 197–209 | DOI | DOI | Zbl

[17] S. Kallel, R. Karoui, “Symmetric joins and weighted barycenters”, Adv. Nonlinear Stud., 11:1 (2011), 117–143 ; arXiv: math/0602283v3 | DOI | MR | Zbl

[18] J.-P. Serre, “Homologie singulière des espaces fibrés. Applications”, Ann. of Math. (2), 54:3 (1951), 425–505 | DOI | MR | MR | Zbl | Zbl

[19] A. Borel, “Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts”, Ann. of Math. (2), 57 (1953), 115–207 | DOI | MR | MR | Zbl | Zbl

[20] V. A. Vasil'ev, “Homology of spaces of homogeneous polynomials in $\mathbf R^2$ without multiple zeros”, Proc. Steklov Inst. Math., 221 (1998), 133–138 ; arXiv: 1407.7230 | MR | Zbl