Periodic solutions of travelling-wave type in circular gene networks
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 523-548
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider circular chains of unidirectionally coupled ordinary differential
equations which are mathematical models of artificial gene networks.
We study the problems of the existence and stability of special
periodic solutions, the so-called travelling waves, in these chains.
We establish that
the number of such periodic solutions grows unboundedly as the number
of links in the chain grows. However, at most one of these travelling waves
can be stable. We give an explicit algorithm for choosing the stable cycle.
Keywords:
chain of unidirectionally coupled equations, artificial gene network, travelling wave, asymptotics, stability.
@article{IM2_2016_80_3_a4,
author = {A. Yu. Kolesov and N. Kh. Rozov and V. A. Sadovnichii},
title = {Periodic solutions of travelling-wave type in circular gene networks},
journal = {Izvestiya. Mathematics },
pages = {523--548},
publisher = {mathdoc},
volume = {80},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a4/}
}
TY - JOUR AU - A. Yu. Kolesov AU - N. Kh. Rozov AU - V. A. Sadovnichii TI - Periodic solutions of travelling-wave type in circular gene networks JO - Izvestiya. Mathematics PY - 2016 SP - 523 EP - 548 VL - 80 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a4/ LA - en ID - IM2_2016_80_3_a4 ER -
A. Yu. Kolesov; N. Kh. Rozov; V. A. Sadovnichii. Periodic solutions of travelling-wave type in circular gene networks. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 523-548. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a4/