Mots-clés : stress matrix.
@article{IM2_2016_80_3_a3,
author = {M. D. Kovalev},
title = {The determinant of the stress matrix and restorability of hinged frameworks from self-stresses},
journal = {Izvestiya. Mathematics},
pages = {500--522},
year = {2016},
volume = {80},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a3/}
}
M. D. Kovalev. The determinant of the stress matrix and restorability of hinged frameworks from self-stresses. Izvestiya. Mathematics, Tome 80 (2016) no. 3, pp. 500-522. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a3/
[1] R. Connelly, “Rigidity and energy”, Invent. Math., 66:1 (1982), 11–33 | DOI | MR | Zbl
[2] R. Connelly, “Rigidity”, Chapter 1.7, Handbook of convex geometry, v. A, North-Holland, Amsterdam, 1993, 223–271 | DOI | MR | Zbl
[3] M. D. Kovalev, “On the reconstructibility of frameworks from self-stresses”, Izv. Math., 61:4 (1997), 717–741 | DOI | DOI | MR | Zbl
[4] W. T. Tutte, “How to draw a graph”, Proc. London Math. Soc. (3), 13:1 (1963), 743–767 | DOI | MR | Zbl
[5] F. Harary, Graph theory, Addison-Wesley, Reading–Menlo Park–London, 1969, ix+274 pp. | MR | MR | Zbl | Zbl
[6] M. D. Kovalev, “Geometric theory of hinged devices”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 43–68 | DOI | MR | Zbl
[7] L. Asimow, B. Roth, “The rigidity of graphs. II”, J. Math. Anal. Appl., 68:1 (1979), 171–190 | DOI | MR | Zbl
[8] H. Crapo, W. Whiteley, “Statics of frameworks and motions of panel structures, a projective geometric introduction”, Structural Topology, 1982, no. 6, 43–82 | MR | Zbl
[9] M. D. Kovalev, “Voprosy geometrii sharnirnykh ustroistv i skhem”, Vestnik MGTU. Seriya Mashinostroenie, 2001, no. 4, 33–51
[10] M. D. Kovalev, “Straightened hinged frameworks”, Sb. Math., 195:6 (2004), 833–858 | DOI | DOI | MR | Zbl
[11] M. D. Kovalev, “A restoring stress doesn't always exist”, New trends in mechanism and machine science, Mechanisms and Machine Science, 7, Springer-Verlag, Dordrecht, 2013, 53–61 | DOI
[12] S. Akbulut, H. King, Topology of real algebraic sets, Math. Sci. Res. Inst. Publ., 25, Springer-Verlag, New York, 1992, x+249 pp. | DOI | MR | Zbl