The determinant of the stress matrix and restorability of hinged frameworks from self-stresses
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 500-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider static-geometrical properties of planar hinged frameworks some of whose hinges are fastened. For such frameworks we establish some properties of the determinant of the stress matrix, including a necessary and sufficient condition for the irreducibility of this determinant as a polynomial. Using the irreducibility property, we prove the existence of uncancellable completely stressed frameworks with non-collinear fastened hinges for two infinite sequences of structure schemes. We give examples of frameworks such that the positions of all their free hinges can be restored knowing the space of self-stresses and the positions of the fastened hinges. However, this cannot be done knowing only one arbitrary stress instead of the whole space of self-stresses.
Keywords: fastened hinged framework, self-stress
Mots-clés : stress matrix.
@article{IM2_2016_80_3_a3,
     author = {M. D. Kovalev},
     title = {The determinant of the stress matrix and restorability of hinged frameworks from self-stresses},
     journal = {Izvestiya. Mathematics },
     pages = {500--522},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a3/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - The determinant of the stress matrix and restorability of hinged frameworks from self-stresses
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 500
EP  - 522
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a3/
LA  - en
ID  - IM2_2016_80_3_a3
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T The determinant of the stress matrix and restorability of hinged frameworks from self-stresses
%J Izvestiya. Mathematics 
%D 2016
%P 500-522
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a3/
%G en
%F IM2_2016_80_3_a3
M. D. Kovalev. The determinant of the stress matrix and restorability of hinged frameworks from self-stresses. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 500-522. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a3/

[1] R. Connelly, “Rigidity and energy”, Invent. Math., 66:1 (1982), 11–33 | DOI | MR | Zbl

[2] R. Connelly, “Rigidity”, Chapter 1.7, Handbook of convex geometry, v. A, North-Holland, Amsterdam, 1993, 223–271 | DOI | MR | Zbl

[3] M. D. Kovalev, “On the reconstructibility of frameworks from self-stresses”, Izv. Math., 61:4 (1997), 717–741 | DOI | DOI | MR | Zbl

[4] W. T. Tutte, “How to draw a graph”, Proc. London Math. Soc. (3), 13:1 (1963), 743–767 | DOI | MR | Zbl

[5] F. Harary, Graph theory, Addison-Wesley, Reading–Menlo Park–London, 1969, ix+274 pp. | MR | MR | Zbl | Zbl

[6] M. D. Kovalev, “Geometric theory of hinged devices”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 43–68 | DOI | MR | Zbl

[7] L. Asimow, B. Roth, “The rigidity of graphs. II”, J. Math. Anal. Appl., 68:1 (1979), 171–190 | DOI | MR | Zbl

[8] H. Crapo, W. Whiteley, “Statics of frameworks and motions of panel structures, a projective geometric introduction”, Structural Topology, 1982, no. 6, 43–82 | MR | Zbl

[9] M. D. Kovalev, “Voprosy geometrii sharnirnykh ustroistv i skhem”, Vestnik MGTU. Seriya Mashinostroenie, 2001, no. 4, 33–51

[10] M. D. Kovalev, “Straightened hinged frameworks”, Sb. Math., 195:6 (2004), 833–858 | DOI | DOI | MR | Zbl

[11] M. D. Kovalev, “A restoring stress doesn't always exist”, New trends in mechanism and machine science, Mechanisms and Machine Science, 7, Springer-Verlag, Dordrecht, 2013, 53–61 | DOI

[12] S. Akbulut, H. King, Topology of real algebraic sets, Math. Sci. Res. Inst. Publ., 25, Springer-Verlag, New York, 1992, x+249 pp. | DOI | MR | Zbl