Chow groups of intersections of quadrics via homological projective duality
Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 463-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conjectures of Beilinson–Bloch type predict that the low-degree rational Chow groups of intersections of quadrics are one-dimensional. This conjecture was proved by Otwinowska in [1]. By making use of homological projective duality and the recent theory of (Jacobians of) non-commutative motives, we give an alternative proof of this conjecture in the case of a complete intersection of either two quadrics or three odd-dimensional quadrics. Moreover, we prove that in these cases the unique non-trivial algebraic Jacobian is the middle one. As an application, we make use of Vial's work [2], [3] to describe the rational Chow motives of these complete intersections and show that smooth fibrations into such complete intersections over bases $S$ of small dimension satisfy Murre's conjecture (when $\dim (S)\leq 1$), Grothendieck's standard conjecture of Lefschetz type (when $\dim (S)\leq 2$), and Hodge's conjecture (when $\dim(S)\leq 3$).
Keywords: quadrics, homological projective duality, Jacobians, non-commutative motives, non-commutative algebraic geometry.
@article{IM2_2016_80_3_a0,
     author = {M. Bernardara and G. Tabuada},
     title = {Chow groups of intersections of quadrics via homological projective duality},
     journal = {Izvestiya. Mathematics },
     pages = {463--480},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a0/}
}
TY  - JOUR
AU  - M. Bernardara
AU  - G. Tabuada
TI  - Chow groups of intersections of quadrics via homological projective duality
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 463
EP  - 480
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a0/
LA  - en
ID  - IM2_2016_80_3_a0
ER  - 
%0 Journal Article
%A M. Bernardara
%A G. Tabuada
%T Chow groups of intersections of quadrics via homological projective duality
%J Izvestiya. Mathematics 
%D 2016
%P 463-480
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a0/
%G en
%F IM2_2016_80_3_a0
M. Bernardara; G. Tabuada. Chow groups of intersections of quadrics via homological projective duality. Izvestiya. Mathematics , Tome 80 (2016) no. 3, pp. 463-480. http://geodesic.mathdoc.fr/item/IM2_2016_80_3_a0/

[1] A. Otwinowska, “Remarques sur les cycles de petite dimension de certaines intersections complètes”, C. R. Acad. Sci. Paris Sér. I Math., 329:2 (1999), 141–146 | DOI | MR | Zbl

[2] C. Vial, “Projectors on the intermediate algebraic Jacobians”, New York J. Math., 19 (2013), 793–822 | MR | Zbl

[3] C. Vial, “Algebraic cycles and fibrations”, Doc. Math., 18 (2013), 1521–1553 | MR | Zbl

[4] K. P. Paranjape, “Cohomological and cycle-theoretic connectivity”, Ann. of Math. (2), 139:3 (1994), 641–660 | DOI | MR | Zbl

[5] H. Esnault, M. Levine, E. Viehweg, “Chow groups of projective varieties of very small degree”, Duke Math. J., 87:1 (1997), 29–58 | DOI | MR | Zbl

[6] P. A. Griffiths, “On the periods of certain rational integrals. I, II”, Ann. of Math. (2), 90:3 (1969), 460–495, 496–541 | DOI | DOI | MR | Zbl

[7] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, 10, Soc. Math. France, Paris, 2002, viii+595 pp. | MR | Zbl

[8] M. Reid, The complete intersection of two or more quadrics, Ph. D. Thesis, Cambridge, Univ. of Cambridge, 1972, 94 pp. {http://homepages.warwick.ac.uk/~masda/3folds/qu.pdf}

[9] A. Beauville, “Variétés de {P}rym et jacobiennes intermédiaires”, Ann. Sci. École Norm. Sup. (4), 10:3 (1977), 309–391 | MR | Zbl

[10] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panor. Synthèses, 17, Soc. Math. France, Paris, 2004, xii+261 pp. | MR | Zbl

[11] B. Keller, “On differential graded categories”, International Congress of Mathematicians (Madrid), v. II, Eur. Math. Soc., Zürich, 2006, 151–190 | MR | Zbl

[12] M. Kontsevich, Non-commutative motives, Talk at the Institute for Advanced Study on the occasion of the $61^{\mathrm{st}}$ birthday of Pierre Deligne, October 2005, 2005 {http://video.ias.edu/Geometry-and-Arithmetic}

[13] M. Kontsevich, Mixed noncommutative motives, Talk at the Workshop on Homological Mirror Symmetry, Miami, 2010

[14] M. Kontsevich, “Notes on motives in finite characteristic”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhäuser, Boston, MA, 2009, 213–247 | DOI | MR | Zbl

[15] G. Tabuada, Noncommutative motives, Univ. Lecture Ser., 63, Amer. Math. Soc., Providence, RI, 2015, x+114 pp. | DOI | MR | Zbl

[16] A. Bondal, D. Orlov, Semi-orthogonal decomposition for algebraic varieties, arXiv: alg-geom/9506012

[17] G. Tabuada, “Invariants additifs de dg-catégories”, Int. Math. Res. Not., 2005:53 (2005), 3309–3339 | DOI | MR | Zbl

[18] M. Marcolli, G. Tabuada, “Noncommutative motives, numerical equivalence, and semi-simplicity”, Amer. J. Math., 136:1 (2014), 59–75 | DOI | MR | Zbl

[19] M. Marcolli, G. Tabuada, “Jacobians of noncommutative motives”, Mosc. Math. J., 14:3 (2014), 577–594 | MR | Zbl

[20] M. Bernardara, G. Tabuada, “From semi-orthogonal decompositions to polarized intermediate Jacobians via Jacobians of noncommutative motives”, Mosc. Math. J. (to appear)

[21] A. Kuznetsov, “Derived categories of quadric fibrations and intersections of quadrics”, Adv. Math., 218:5 (2008), 1340–1369 | DOI | MR | Zbl

[22] A. Polishchuk, “Holomorphic bundles on 2-dimensional noncommutative toric orbifolds”, Noncommutative geometry and number theory, Aspects Math., E37, Vieweg, Wiesbaden, 2006, 341–359 | DOI | MR | Zbl

[23] M. Bernardara, G. Tabuada, “Relations between the Chow motive and the noncommutative motive of a smooth projective variety”, J. Pure Appl. Algebra, 219:11 (2015), 5068–5077 | DOI | MR | Zbl

[24] M. Marcolli, G. Tabuada, “From exceptional collection to motivic decompositions via noncommutative motives”, J. Reine Angew. Math., 2015:701 (2015), 153–167 | DOI | MR | Zbl

[25] S.-I. Kimura, “Surjectivity of the cycle map for Chow motives”, Motives and algebraic cycles, Fields Inst. Commun., 56, Amer. Math. Soc., Providence, RI, 2009, 157–165 | MR | Zbl

[26] C. Vial, “Pure motives with representable Chow groups”, C. R. Math. Acad. Sci. Paris, 348:21-22 (2010), 1191–1195 | DOI | MR | Zbl

[27] A. Grothendieck, “Standard conjectures on algebraic cycles”, 1969 Algebraic geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 193–199 | MR | Zbl

[28] J. Bouali, “Motives of quadric bundles”, Manuscripta Math., 149:3-4 (2016), 347–368 ; arXiv: 1310.2782 | DOI | MR | Zbl

[29] A. Beilinson, “Coherent sheaves on $\mathbf P^n$ and problems of linear algebra”, Funct. Anal. Appl., 12:3 (1978), 214–216 | DOI | MR | Zbl