Local and global continuous $\varepsilon$-selection
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 442-461.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of sets for which there is a continuous selection from the set of almost-best approximants. We establish relations between local and global selections, give various examples of sets possessing a continuous $\varepsilon$-selection, and introduce the notions of moduli of approximative continuity, approximative $\delta$-solarity and uniform approximative continuity. These notions enable us to establish the $\delta$-solarity of sets under certain conditions.
Keywords: $\varepsilon$-selection, monotone path-connected sets, $\delta$-solarity, $\mathring{B}$-infinite connectedness, $\mathring{B}$-approximative infinite connectedness, moduli of approximative continuity.
@article{IM2_2016_80_2_a8,
     author = {I. G. Tsar'kov},
     title = {Local and global continuous $\varepsilon$-selection},
     journal = {Izvestiya. Mathematics },
     pages = {442--461},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a8/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Local and global continuous $\varepsilon$-selection
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 442
EP  - 461
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a8/
LA  - en
ID  - IM2_2016_80_2_a8
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Local and global continuous $\varepsilon$-selection
%J Izvestiya. Mathematics 
%D 2016
%P 442-461
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a8/
%G en
%F IM2_2016_80_2_a8
I. G. Tsar'kov. Local and global continuous $\varepsilon$-selection. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 442-461. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a8/

[1] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl

[2] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[3] I. G. Tsar'kov, “Local smoothing of uniformly smooth maps”, Funct. Anal. Appl., 40:3 (2006), 200–206 | DOI | DOI | MR | Zbl

[4] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl

[5] I. G. Tsar'kov, “Properties of sets admitting stable $\varepsilon$-selections”, Math. Notes, 89:4 (2011), 572–576 | DOI | DOI | MR | Zbl

[6] C. S. Rjutin, “Uniform continuity of generalized rational approximations”, Math. Notes, 71:2 (2002), 236–244 | DOI | DOI | MR | Zbl

[7] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | DOI | MR | Zbl

[8] E. D. Livshits, “On almost-best approximation by piecewise polynomial functions in the space $C[0,1]$”, Math. Notes, 78:4 (2005), 586–591 | DOI | DOI | MR | Zbl

[9] E. D. Livshitz, “Continuous selections of operators of almost best approximation by splines in the space $L_p[0,1]$”, Russ. J. Math. Phys., 12:2 (2005), 215–218 | MR | Zbl

[10] C. S. Rjutin, “Continuity of operators of generalized rational approximation in the space $L_1[0;1]$”, Math. Notes, 73:1 (2003), 142–147 | DOI | DOI | MR | Zbl

[11] I. G. Tsarkov, “Mnozhestva, obladayuschie nepreryvnoi vyborkoi iz operatora pochti nailuchshego priblizheniya”, Sovremennye problemy matematiki i mekhaniki, 9, no. 2, Izd-vo Mosk. un-ta, M., 2014, 54–58

[12] L. P. Vlasov, “Approximate properties of sets in Banach spaces”, Math. Notes, 7:5 (1970), 358–364 | DOI | MR | Zbl

[13] L. P. Vlasov, “Some theorems on Chebyshev sets”, Math. Notes, 11:2 (1972), 87–92 | DOI | MR | Zbl

[14] A. R. Alimov, “A monotone path connected Chebyshev set is a sun”, Math. Notes, 91:2 (2012), 290–292 | DOI | DOI | MR | Zbl

[15] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655 | DOI | DOI | MR | Zbl

[16] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl

[17] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91