Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_2_a8, author = {I. G. Tsar'kov}, title = {Local and global continuous $\varepsilon$-selection}, journal = {Izvestiya. Mathematics }, pages = {442--461}, publisher = {mathdoc}, volume = {80}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a8/} }
I. G. Tsar'kov. Local and global continuous $\varepsilon$-selection. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 442-461. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a8/
[1] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl
[2] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl
[3] I. G. Tsar'kov, “Local smoothing of uniformly smooth maps”, Funct. Anal. Appl., 40:3 (2006), 200–206 | DOI | DOI | MR | Zbl
[4] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl
[5] I. G. Tsar'kov, “Properties of sets admitting stable $\varepsilon$-selections”, Math. Notes, 89:4 (2011), 572–576 | DOI | DOI | MR | Zbl
[6] C. S. Rjutin, “Uniform continuity of generalized rational approximations”, Math. Notes, 71:2 (2002), 236–244 | DOI | DOI | MR | Zbl
[7] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | DOI | MR | Zbl
[8] E. D. Livshits, “On almost-best approximation by piecewise polynomial functions in the space $C[0,1]$”, Math. Notes, 78:4 (2005), 586–591 | DOI | DOI | MR | Zbl
[9] E. D. Livshitz, “Continuous selections of operators of almost best approximation by splines in the space $L_p[0,1]$”, Russ. J. Math. Phys., 12:2 (2005), 215–218 | MR | Zbl
[10] C. S. Rjutin, “Continuity of operators of generalized rational approximation in the space $L_1[0;1]$”, Math. Notes, 73:1 (2003), 142–147 | DOI | DOI | MR | Zbl
[11] I. G. Tsarkov, “Mnozhestva, obladayuschie nepreryvnoi vyborkoi iz operatora pochti nailuchshego priblizheniya”, Sovremennye problemy matematiki i mekhaniki, 9, no. 2, Izd-vo Mosk. un-ta, M., 2014, 54–58
[12] L. P. Vlasov, “Approximate properties of sets in Banach spaces”, Math. Notes, 7:5 (1970), 358–364 | DOI | MR | Zbl
[13] L. P. Vlasov, “Some theorems on Chebyshev sets”, Math. Notes, 11:2 (1972), 87–92 | DOI | MR | Zbl
[14] A. R. Alimov, “A monotone path connected Chebyshev set is a sun”, Math. Notes, 91:2 (2012), 290–292 | DOI | DOI | MR | Zbl
[15] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655 | DOI | DOI | MR | Zbl
[16] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl
[17] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91