On the homotopy structure of compact complex homogeneous manifolds
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 329-341

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider compact complex homogeneous manifolds up to finite coverings. We give sufficient conditions under which the natural bundle for such a manifold is homotopically trivial. This triviality always holds in the case when the stationary subgroup is discrete.
Keywords: homogeneous space, lattice
Mots-clés : complex Lie group, homotopy type.
@article{IM2_2016_80_2_a3,
     author = {V. V. Gorbatsevich},
     title = {On the homotopy structure of compact complex homogeneous manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {329--341},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a3/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On the homotopy structure of compact complex homogeneous manifolds
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 329
EP  - 341
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a3/
LA  - en
ID  - IM2_2016_80_2_a3
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On the homotopy structure of compact complex homogeneous manifolds
%J Izvestiya. Mathematics 
%D 2016
%P 329-341
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a3/
%G en
%F IM2_2016_80_2_a3
V. V. Gorbatsevich. On the homotopy structure of compact complex homogeneous manifolds. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 329-341. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a3/