On the homotopy structure of compact complex homogeneous manifolds
Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 329-341
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider compact complex homogeneous manifolds up to finite coverings.
We give sufficient conditions under which the natural bundle
for such a manifold is homotopically trivial. This triviality always holds
in the case when the stationary subgroup is discrete.
Keywords:
homogeneous space, lattice
Mots-clés : complex Lie group, homotopy type.
Mots-clés : complex Lie group, homotopy type.
@article{IM2_2016_80_2_a3,
author = {V. V. Gorbatsevich},
title = {On the homotopy structure of compact complex homogeneous manifolds},
journal = {Izvestiya. Mathematics },
pages = {329--341},
publisher = {mathdoc},
volume = {80},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a3/}
}
V. V. Gorbatsevich. On the homotopy structure of compact complex homogeneous manifolds. Izvestiya. Mathematics , Tome 80 (2016) no. 2, pp. 329-341. http://geodesic.mathdoc.fr/item/IM2_2016_80_2_a3/