Nuttall's integral equation and Bernshtein's asymptotic formula for a~complex weight
Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1215-1234

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain Nuttall's integral equation provided that the corresponding complex-valued function $\sigma(x)$ does not vanish and belongs to the Dini–Lipschitz class. Using this equation, we obtain a complex analogue of Bernshtein's classical asymptotic formulae for polynomials orthogonal on the closed unit interval $\Delta=[-1,1]$ with respect to a complex-valued weight $h(x)=\sigma(x)/\sqrt{1-x^2}$.
Keywords: Padé polynomials, strong asymptotics, Bernshtein's formula, Nuttall's method.
Mots-clés : orthogonal polynomials
@article{IM2_2015_79_6_a4,
     author = {N. R. Ikonomov and R. K. Kovacheva and S. P. Suetin},
     title = {Nuttall's integral equation and {Bernshtein's} asymptotic formula for a~complex weight},
     journal = {Izvestiya. Mathematics },
     pages = {1215--1234},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a4/}
}
TY  - JOUR
AU  - N. R. Ikonomov
AU  - R. K. Kovacheva
AU  - S. P. Suetin
TI  - Nuttall's integral equation and Bernshtein's asymptotic formula for a~complex weight
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 1215
EP  - 1234
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a4/
LA  - en
ID  - IM2_2015_79_6_a4
ER  - 
%0 Journal Article
%A N. R. Ikonomov
%A R. K. Kovacheva
%A S. P. Suetin
%T Nuttall's integral equation and Bernshtein's asymptotic formula for a~complex weight
%J Izvestiya. Mathematics 
%D 2015
%P 1215-1234
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a4/
%G en
%F IM2_2015_79_6_a4
N. R. Ikonomov; R. K. Kovacheva; S. P. Suetin. Nuttall's integral equation and Bernshtein's asymptotic formula for a~complex weight. Izvestiya. Mathematics , Tome 79 (2015) no. 6, pp. 1215-1234. http://geodesic.mathdoc.fr/item/IM2_2015_79_6_a4/