Browder functions and theorems on fixed points and coincidences
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 1087-1095.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of a functional subject to a function series, the notion of a Browder function, and also the notion of a functional subject to a Browder function. We prove theorems on the search for zeros of these functionals. On the basis of this, we obtain a development, for set-valued maps, of Browder's well-known fixed-point theorem and also prove theorems on common pre-images and coincidences of maps of metric spaces which generalize some known results.
Keywords: Browder's theorem, Browder function, search for zeros of a functional, fixed point, coincidence point.
@article{IM2_2015_79_5_a9,
     author = {T. N. Fomenko},
     title = {Browder functions and theorems on fixed points and coincidences},
     journal = {Izvestiya. Mathematics },
     pages = {1087--1095},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a9/}
}
TY  - JOUR
AU  - T. N. Fomenko
TI  - Browder functions and theorems on fixed points and coincidences
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 1087
EP  - 1095
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a9/
LA  - en
ID  - IM2_2015_79_5_a9
ER  - 
%0 Journal Article
%A T. N. Fomenko
%T Browder functions and theorems on fixed points and coincidences
%J Izvestiya. Mathematics 
%D 2015
%P 1087-1095
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a9/
%G en
%F IM2_2015_79_5_a9
T. N. Fomenko. Browder functions and theorems on fixed points and coincidences. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 1087-1095. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a9/

[1] F. E. Browder, “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wetensch. Proc. Ser. A, 71 (1968), 27–35 | DOI | MR | Zbl

[2] A. Granas, J. Dugundji, Fixed point theory, Springer Monogr. Math., Springer-Verlag, New York, 2003, xvi+690 pp. | DOI | MR | Zbl

[3] J. Jachymski, “Around Browder's fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5:1 (2009), 47–61 | DOI | MR | Zbl

[4] J. Jachymski, I. Jozwik, “Nonlinear contractive conditions: a comparison and related problems”, Fixed point theory and its applications, Banach Center Publ., 77, Polish Acad. Sci., Warsaw, 2007, 123–146 | DOI | MR | Zbl

[5] P. V. Semenov, “Fixed points of multivalued contractions”, Funct. Anal. Appl., 36:2 (2002), 159–161 | DOI | DOI | MR | Zbl

[6] T. N. Fomenko, “Cascade search principle and its applications to the coincidence problems of $n$ one-valued or multi-valued mappings”, Topology Appl., 157:4 (2010), 760–773 | DOI | MR | Zbl

[7] T. N. Fomenko, “Functionals strictly subordinate to series and search for solutions of equations”, Dokl. Math., 88:3 (2013), 748–750 | DOI | DOI | MR | Zbl

[8] T. N. Fomenko, “Functionals strictly subjected to convergent series and search for singularities of mappings”, J. Fixed Point Theory Appl., 14:1 (2013), 21–40 | DOI | MR | Zbl

[9] S. R. Gajnullova, T. N. Fomenko, “Functionals subordinate to converging series and some applications”, Math. Notes, 96:2 (2014), 294–297 | DOI | DOI | Zbl