Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 955-1012
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Cauchy problems for a class of non-linear equations of Sobolev
type. It is shown that for such problems there is a critical exponent
(depending on the dimension of the space $\mathbb{R}^N$) according
to which a weak local solution either exists uniquely or does not exist.
Keywords:
Fujita's critical exponent, non-linear equations of Sobolev type,
blow-up, local solubility, non-linear capacity.
@article{IM2_2015_79_5_a4,
author = {M. O. Korpusov},
title = {Critical exponents of instantaneous blow-up or local solubility of non-linear equations of {Sobolev} type},
journal = {Izvestiya. Mathematics },
pages = {955--1012},
publisher = {mathdoc},
volume = {79},
number = {5},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/}
}
TY - JOUR AU - M. O. Korpusov TI - Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type JO - Izvestiya. Mathematics PY - 2015 SP - 955 EP - 1012 VL - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/ LA - en ID - IM2_2015_79_5_a4 ER -
M. O. Korpusov. Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 955-1012. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/