Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type
Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 955-1012

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Cauchy problems for a class of non-linear equations of Sobolev type. It is shown that for such problems there is a critical exponent (depending on the dimension of the space $\mathbb{R}^N$) according to which a weak local solution either exists uniquely or does not exist.
Keywords: Fujita's critical exponent, non-linear equations of Sobolev type, blow-up, local solubility, non-linear capacity.
@article{IM2_2015_79_5_a4,
     author = {M. O. Korpusov},
     title = {Critical exponents of instantaneous blow-up or local solubility of non-linear equations of {Sobolev} type},
     journal = {Izvestiya. Mathematics },
     pages = {955--1012},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 955
EP  - 1012
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/
LA  - en
ID  - IM2_2015_79_5_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type
%J Izvestiya. Mathematics 
%D 2015
%P 955-1012
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/
%G en
%F IM2_2015_79_5_a4
M. O. Korpusov. Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 955-1012. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/