Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_5_a4, author = {M. O. Korpusov}, title = {Critical exponents of instantaneous blow-up or local solubility of non-linear equations of {Sobolev} type}, journal = {Izvestiya. Mathematics }, pages = {955--1012}, publisher = {mathdoc}, volume = {79}, number = {5}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/} }
TY - JOUR AU - M. O. Korpusov TI - Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type JO - Izvestiya. Mathematics PY - 2015 SP - 955 EP - 1012 VL - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/ LA - en ID - IM2_2015_79_5_a4 ER -
M. O. Korpusov. Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type. Izvestiya. Mathematics , Tome 79 (2015) no. 5, pp. 955-1012. http://geodesic.mathdoc.fr/item/IM2_2015_79_5_a4/
[1] H. Brezis, X. Cabré, “Some simple nonlinear PDE's without solutions”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1:2 (1998), 223–262 | MR | Zbl
[2] X. Cabré, Y. Martel, “Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier [Existence versus instantaneous blow-up for linear heat equations with singular potentials]”, C. R. Acad. Sci. Paris Sér. I Math., 329:11 (1999), 973–978 | DOI | MR | Zbl
[3] F. B. Weissler, “Local existence and nonexistence for semilinear parabolic equations in $L^p$”, Indiana Univ. Math. J., 29:1 (1980), 79–102 | DOI | MR | Zbl
[4] È. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl
[5] V. A. Galaktionov, J.-L. Vázquez, “The problem of blow-up in nonlinear parabolic equations”, Current developments in partial differential equations (Temuco, 1999), Discrete Contin. Dyn. Syst., 8:2 (2002), 399–433 | DOI | MR | Zbl
[6] J. A. Goldstein, I. Kombe, “Instantaneous blow up”, Advances in differential equations and mathematical physics (Birmingham, AL, 2002), Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003, 141–150 | DOI | MR | Zbl
[7] Y. Giga, N. Umeda, “On instant blow-up for semilinear heat equations with growing initial data”, Methods Appl. Anal., 15:2 (2008), 185–195 | DOI | MR | Zbl
[8] E. I. Galakhov, “On the absence of local solutions of several evolutionary problems”, Math. Notes, 86:3 (2009), 314–324 | DOI | DOI | MR | Zbl
[9] E. I. Galakhov, “On the instantaneous blow-up of solutions of some quasilinear evolution problems”, Differ. Equ., 46:3 (2010), 329–338 | DOI | MR | Zbl
[10] B. D. Coleman, R. J. Duffin, V. J. Mizel, “Instability, uniqueness and nonexistence theorems for the equation $u_t=u_{xx}-u_{xtx}$ on a strip”, Arch. Ration. Mech. Anal., 19:2 (1965), 100–116 | DOI | MR | Zbl
[11] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[12] M. O. Korpusov, A. G. Sveshnikov, “Application of the nonlinear capacity method to differential inequalities of Sobolev type”, Differ. Equ., 45:7 (2009), 951–959 | DOI | MR | Zbl
[13] A. Alsaedi, M. S. Alhothuali, B. Ahmad, S. Kerbal, M. Kirane, “Nonlinear fractional differential equations of Sobolev type”, Math. Methods Appl. Sci., 37:13 (2014), 2009–2016 | DOI | MR | Zbl
[14] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, Walter de Gruyter Co., Berlin, 2011, xii+648 pp. | MR | Zbl
[15] S. I. Pokhozhaev, “On the dependence of the critical exponent of the nonlinear heat equation on the initial function”, Differ. Equ., 47:7 (2011), 955–962 | DOI | MR | Zbl
[16] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr{F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl
[17] M. O. Korpusov, A. A. Panin, “Blow-up of solutions of an abstract Cauchy problem for a formally hyperbolic equation with double non-linearity”, Izv. Math., 78:5 (2014), 937–985 | DOI | DOI | MR | Zbl
[18] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR | Zbl
[19] A. Friedman, Partial differential equations of parabolic type, Englewood Cliffs, NJ, Prentice-Hall, Inc., 1964 | MR | Zbl | Zbl
[20] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl
[21] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | MR | Zbl | Zbl