Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method
Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 838-858.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of linear means of the Fourier series $\sum_{k=-\infty}^{+\infty}\!\lambda_{k,\varepsilon}\hat{f}_ke^{ikx}$ of a function $f\in L_1[-\pi,\pi]$ to $f(x)$ as $\varepsilon\searrow0$ at all points at which the derivative $\bigl(\int_0^xf(t)\,dt\bigr)'$ exists (i. e. at the $d$-points). Sufficient conditions for the convergence are stated in terms of the factors $\{\lambda_{k,\varepsilon}\}$ and, in the case of $\lambda_{k,\varepsilon}=\varphi(\varepsilon k)$, in terms of the condition that the functions $\varphi$ and $x\varphi'(x)$ belong to the Wiener algebra $A(\mathbb R)$. We also study a new problem concerning the convergence of means of the Abel–Poisson type, $\sum_{k=-\infty}^\infty r^{\psi(|k|)}\hat{f}_ke^{ikx}$, as $r\nearrow1$ depending on the growth of the function $\psi\nearrow+\infty$ on the semi-axis. It turns out that $\psi$ cannot differ substantially from a power-law function.
Keywords: Fourier series, Banach algebra of absolutely convergent Fourier integrals, multiplier
Mots-clés : Abel–Poisson method.
@article{IM2_2015_79_4_a7,
     author = {R. M. Trigub},
     title = {Summability of trigonometric {Fourier} series at $d$-points and a~generalization of the {Abel--Poisson} method},
     journal = {Izvestiya. Mathematics },
     pages = {838--858},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 838
EP  - 858
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/
LA  - en
ID  - IM2_2015_79_4_a7
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method
%J Izvestiya. Mathematics 
%D 2015
%P 838-858
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/
%G en
%F IM2_2015_79_4_a7
R. M. Trigub. Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method. Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 838-858. http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/

[1] S. V. Konyagin, “On everywhere divergence of trigonometric Fourier series”, Sb. Math., 191:1 (2000), 97–120 | DOI | DOI | MR | Zbl

[2] N. Yu. Antonov, “Convergence of Fourier series”, East J. Approx., 2:2 (1996), 187–196 | MR | Zbl

[3] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | MR | Zbl | Zbl

[4] G. H. Hardy, W. W. Rogosinski, Fourier series, Cambridge Tracts in Mathematics and Mathematical Physics, 38, 2nd ed., Cambridge Univ. Press, Cambridge, 1950, x+100 pp. | MR | Zbl | Zbl

[5] R. M. Trigub, E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004, xiv+585 pp. | DOI | MR | Zbl

[6] G. H. Hardy, Divergent series, Oxford, Clarendon Press, 1949, xvi+396 pp. | MR | MR | Zbl

[7] E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68 | DOI | MR | Zbl

[8] S. A. Telyakovskii, “Usloviya integriruemosti trigonometricheskikh ryadov i ikh prilozhenie k izucheniyu lineinykh metodov summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1209–1236 | MR | Zbl

[9] E. Liflyand, R. Trigub, “Conditions for the absolute convergence of Fourier integrals”, J. Approx. Theory, 163:4 (2011), 438–459 | DOI | MR | Zbl

[10] R. M. Trigub, “Generalization of the Abel–Poisson method for summations of Fourier trigonometric series”, Math. Notes, 96:3 (2014), 454–457 | DOI | DOI