Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method
Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 838-858

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of linear means of the Fourier series $\sum_{k=-\infty}^{+\infty}\!\lambda_{k,\varepsilon}\hat{f}_ke^{ikx}$ of a function $f\in L_1[-\pi,\pi]$ to $f(x)$ as $\varepsilon\searrow0$ at all points at which the derivative $\bigl(\int_0^xf(t)\,dt\bigr)'$ exists (i. e. at the $d$-points). Sufficient conditions for the convergence are stated in terms of the factors $\{\lambda_{k,\varepsilon}\}$ and, in the case of $\lambda_{k,\varepsilon}=\varphi(\varepsilon k)$, in terms of the condition that the functions $\varphi$ and $x\varphi'(x)$ belong to the Wiener algebra $A(\mathbb R)$. We also study a new problem concerning the convergence of means of the Abel–Poisson type, $\sum_{k=-\infty}^\infty r^{\psi(|k|)}\hat{f}_ke^{ikx}$, as $r\nearrow1$ depending on the growth of the function $\psi\nearrow+\infty$ on the semi-axis. It turns out that $\psi$ cannot differ substantially from a power-law function.
Keywords: Fourier series, Banach algebra of absolutely convergent Fourier integrals, multiplier
Mots-clés : Abel–Poisson method.
@article{IM2_2015_79_4_a7,
     author = {R. M. Trigub},
     title = {Summability of trigonometric {Fourier} series at $d$-points and a~generalization of the {Abel--Poisson} method},
     journal = {Izvestiya. Mathematics },
     pages = {838--858},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 838
EP  - 858
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/
LA  - en
ID  - IM2_2015_79_4_a7
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method
%J Izvestiya. Mathematics 
%D 2015
%P 838-858
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/
%G en
%F IM2_2015_79_4_a7
R. M. Trigub. Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method. Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 838-858. http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/