Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method
Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 838-858
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the convergence of linear means of the Fourier series
$\sum_{k=-\infty}^{+\infty}\!\lambda_{k,\varepsilon}\hat{f}_ke^{ikx}$
of a function $f\in L_1[-\pi,\pi]$ to $f(x)$ as $\varepsilon\searrow0$ at all points
at which the derivative $\bigl(\int_0^xf(t)\,dt\bigr)'$ exists (i. e. at the
$d$-points). Sufficient conditions for the convergence are stated
in terms of the factors $\{\lambda_{k,\varepsilon}\}$ and, in the case
of $\lambda_{k,\varepsilon}=\varphi(\varepsilon k)$, in terms of the condition
that the functions $\varphi$ and $x\varphi'(x)$ belong to the Wiener
algebra $A(\mathbb R)$. We also study a new problem concerning the convergence
of means of the Abel–Poisson type, $\sum_{k=-\infty}^\infty
r^{\psi(|k|)}\hat{f}_ke^{ikx}$, as $r\nearrow1$ depending on the growth
of the function $\psi\nearrow+\infty$ on the semi-axis. It turns out that $\psi$
cannot differ substantially from a power-law function.
Keywords:
Fourier series, Banach algebra of absolutely convergent Fourier integrals,
multiplier
Mots-clés : Abel–Poisson method.
Mots-clés : Abel–Poisson method.
@article{IM2_2015_79_4_a7,
author = {R. M. Trigub},
title = {Summability of trigonometric {Fourier} series at $d$-points and a~generalization of the {Abel--Poisson} method},
journal = {Izvestiya. Mathematics },
pages = {838--858},
publisher = {mathdoc},
volume = {79},
number = {4},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/}
}
TY - JOUR AU - R. M. Trigub TI - Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method JO - Izvestiya. Mathematics PY - 2015 SP - 838 EP - 858 VL - 79 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/ LA - en ID - IM2_2015_79_4_a7 ER -
R. M. Trigub. Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method. Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 838-858. http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a7/