Birationally rigid Fano fibre spaces. II
Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 809-837.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the birational rigidity of large classes of Fano–Mori fibre spaces over a base of arbitrary dimension bounded above by a constant that depends only on the dimension of the fibres. To do this, we first show that if every fibre of a Fano–Mori fibre space satisfies certain natural conditions, then every birational map onto another such space is fibrewise. Then we construct large classes of fibre spaces (whose fibres are either Fano double spaces of index 1 or Fano hypersurfaces of index 1) satisfying these conditions.
Keywords: birational rigidity, maximal singularity, hypertangent divisor, log canonical singularity, linear system, canonical class.
Mots-clés : Fano–Mori fibre space
@article{IM2_2015_79_4_a6,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid {Fano} fibre spaces. {II}},
     journal = {Izvestiya. Mathematics },
     pages = {809--837},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a6/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid Fano fibre spaces. II
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 809
EP  - 837
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a6/
LA  - en
ID  - IM2_2015_79_4_a6
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid Fano fibre spaces. II
%J Izvestiya. Mathematics 
%D 2015
%P 809-837
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a6/
%G en
%F IM2_2015_79_4_a6
A. V. Pukhlikov. Birationally rigid Fano fibre spaces. II. Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 809-837. http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a6/

[1] A. V. Pukhlikov, Birationally rigid varieties, Math. Surveys Monogr., 190, Amer. Math. Soc., Providence, RI, 2013, vi+365 pp. | DOI | MR | Zbl

[2] V. G. Sarkisov, “Birational automorphisms of conic bundles”, Math. USSR-Izv., 17:1 (1981), 177–202 | DOI | MR | Zbl

[3] V. G. Sarkisov, “On conic bundle structures”, Math. USSR-Izv., 20:2 (1983), 355–390 | DOI | MR | Zbl

[4] H. P. Hudson, Cremona transformations in plane and space, Cambridge Univ. Press, Cambridge, 1927, xx+454 pp. | Zbl

[5] V. A. Iskovskikh, “Rational surfaces with a pencil of rational curves”, Math. USSR-Sb., 3:4 (1967), 563–587 | DOI | MR | Zbl

[6] V. A. Iskovskikh, “Rational surfaces with a pencil of rational curves and with positive square of the canonical class”, Math. USSR-Sb., 12:1 (1970), 91–117 | DOI | MR | Zbl

[7] M. Kh. Gizatullin, “On affine surfaces that can be completed by a nonsingular rational curve”, Math. USSR-Izv., 4:4 (1970), 787–810 | DOI | MR | Zbl

[8] Yu. I. Manin, “Rational surfaces over perfect fields”, Inst. Hautes Études Sci. Publ. Math., 30:1 (1966), 99–113 | DOI | DOI | MR | Zbl

[9] Yu. I. Manin, “Rational surfaces over perfect fields. II”, Math. USSR-Sb., 1:2 (1967), 141–168 | DOI | MR | Zbl

[10] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Math. Library, 4, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., New York, 1974, vii+292 pp. | MR | MR | Zbl | Zbl

[11] I. V. Dolgachev, “O ratsionalnykh poverkhnostyakh s puchkom ellipticheskikh krivykh”, Izv. AN SSSR. Ser. matem., 30:5 (1966), 1073–1100 | MR | Zbl

[12] V. A. Iskovskikh, Yu. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl

[13] A. V. Pukhlikov, “Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces”, Izv. Math., 62:1 (1998), 115–155 | DOI | DOI | MR | Zbl

[14] A. V. Pukhlikov, “Birationally rigid Fano fibrations”, Izv. Math., 64:3 (2000), 563–581 | DOI | DOI | MR | Zbl

[15] I. V. Sobolev, “On a series of birationally rigid varieties with a pencil of Fano hypersurfaces”, Sb. Math., 192:10 (2001), 1543–1551 | DOI | DOI | MR | Zbl

[16] I. V. Sobolev, “Birational automorphisms of a class of varieties fibred into cubic surfaces”, Izv. Math., 66:1 (2002), 201–222 | DOI | DOI | MR | Zbl

[17] A. V. Pukhlikov, “Birationally rigid varieties with a pencil of double Fano covers. I”, Sb. Math., 195:7 (2004), 1039–1071 | DOI | DOI | MR | Zbl

[18] A. V. Pukhlikov, “Birationally rigid varieties with a pencil of Fano double covers. II”, Sb. Math., 195:11 (2004), 1665–1702 | DOI | DOI | MR | Zbl

[19] A. V. Pukhlikov, “Birationally rigid varieties with a pencil of Fano double covers. III”, Sb. Math., 197:3 (2006), 335–368 | DOI | DOI | MR | Zbl

[20] A. V. Pukhlikov, “Birational geometry of algebraic varieties with a pencil of Fano complete intersections”, Manuscripta Math., 121:4 (2006), 491–526 | DOI | MR | Zbl

[21] A. V. Pukhlikov, “Birational geometry of algebraic varieties with a pencil of Fano cyclic covers”, Pure Appl. Math. Q., 5:2 (2009), 641–700 | DOI | MR | Zbl

[22] M. M. Grinenko, “Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2”, Sb. Math., 191:5 (2000), 633–653 | DOI | DOI | MR | Zbl

[23] M. M. Grinenko, “Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2. II”, Sb. Math., 194:5 (2003), 669–695 | DOI | DOI | MR | Zbl

[24] M. M. Grinenko, “On a double cone over a Veronese surface”, Izv. Math., 67:3 (2003), 421–438 | DOI | DOI | MR | Zbl

[25] M. M. Grinenko, “Mori structures on a Fano threefold of index 2 and degree 1”, Proc. Steklov Inst. Math., 246 (2004), 103–128 | MR | Zbl

[26] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | DOI | MR | Zbl

[27] A. V. Pukhlikov, “Birational geometry of Fano double covers”, Sb. Math., 199:8 (2008), 1225–1250 | DOI | DOI | MR | Zbl

[28] I. A. Cheltsov, “Fano varieties with many selfmaps”, Adv. Math., 217:1 (2008), 97–124 | DOI | MR | Zbl

[29] A. V. Pukhlikov, “Birational geometry of singular Fano varieties”, Proc. Steklov Inst. Math., 264 (2009), 159–177 | DOI | MR

[30] Flips and abundance for algebraic threefolds (Univ. of Utah, Salt Lake City, Utah, August 1991), Astérisque, 211, eds. J. Kollár, Soc. Math. France, Paris, 1992, 258 pp. | MR | Zbl

[31] Th. Eckl, A. Pukhlikov, “On the locus of nonrigid hypersurfaces”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, New York, 2014, 121–139 ; 2012, 17 pp., arXiv: 1210.3715 | DOI | Zbl

[32] F. Call, G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, 15–18 | DOI | MR | Zbl

[33] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[34] A. V. Pukhlikov, “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 541 (2001), 55–79 | DOI | MR | Zbl

[35] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl