On $G$-Fano threefolds
Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 795-808

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Fano threefolds with terminal Gorenstein singularities admitting a ‘minimal’ action of a finite group. We prove that under certain additional assumptions such a variety contains no planes. We also obtain upper bounds for the number of singular points of certain Fano threefolds with terminal factorial singularities.
Keywords: Fano variety, terminal singularity, divisor, linear system.
Mots-clés : birational map
@article{IM2_2015_79_4_a5,
     author = {Yu. G. Prokhorov},
     title = {On $G${-Fano} threefolds},
     journal = {Izvestiya. Mathematics },
     pages = {795--808},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a5/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - On $G$-Fano threefolds
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 795
EP  - 808
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a5/
LA  - en
ID  - IM2_2015_79_4_a5
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T On $G$-Fano threefolds
%J Izvestiya. Mathematics 
%D 2015
%P 795-808
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a5/
%G en
%F IM2_2015_79_4_a5
Yu. G. Prokhorov. On $G$-Fano threefolds. Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 795-808. http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a5/