On $G$-Fano threefolds
Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 795-808
Voir la notice de l'article provenant de la source Math-Net.Ru
We study Fano threefolds with terminal Gorenstein
singularities admitting a ‘minimal’ action of a finite group.
We prove that under certain additional assumptions such a variety contains
no planes. We also obtain upper bounds for the number of singular points
of certain Fano threefolds with terminal factorial singularities.
Keywords:
Fano variety, terminal singularity, divisor, linear system.
Mots-clés : birational map
Mots-clés : birational map
@article{IM2_2015_79_4_a5,
author = {Yu. G. Prokhorov},
title = {On $G${-Fano} threefolds},
journal = {Izvestiya. Mathematics },
pages = {795--808},
publisher = {mathdoc},
volume = {79},
number = {4},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a5/}
}
Yu. G. Prokhorov. On $G$-Fano threefolds. Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 795-808. http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a5/