Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2015_79_4_a5, author = {Yu. G. Prokhorov}, title = {On $G${-Fano} threefolds}, journal = {Izvestiya. Mathematics }, pages = {795--808}, publisher = {mathdoc}, volume = {79}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a5/} }
Yu. G. Prokhorov. On $G$-Fano threefolds. Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 795-808. http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a5/
[1] Yu. Prokhorov, “Simple finite subgroups of the Cremona group of rank 3”, J. Algebraic Geom., 21:3 (2012), 563–600 | DOI | MR | Zbl
[2] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | MR | Zbl
[3] Yu. Prokhorov, “$p$-elementary subgroups of the Cremona group of rank 3”, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 327–338 | MR | Zbl
[4] Yu. Prokhorov, “$G$-Fano threefolds. II”, Adv. Geom., 13:3 (2013), 419–434 | MR | Zbl
[5] Yu. Prokhorov, “On the degree of Fano threefolds with canonical Gorenstein singularities”, Sb. Math., 196:1 (2005), 77–114 | DOI | DOI | MR | Zbl
[6] A.-S. Kaloghiros, “The defect of {F}ano 3-folds”, J. Algebraic Geom., 20:1 (2011), 127–149 ; Errata: 21:2 (2012), 397–399 | DOI | MR | Zbl | DOI | Zbl
[7] H. F. Baker, A locus with linear self-transformations, Cambridge Tracts in Mathematics and Mathematical Physics, 39, University Press, Cambridge; The Macmillan Company, New York, 1946, xi+107 pp. | MR
[8] Y. Kawamata, “Crepant blowing-up of {$3$}-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163 | DOI | MR | Zbl
[9] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry. V: Fano varieties, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–245 | MR
[10] Y. Namikawa, “Smoothing Fano 3-folds”, J. Algebraic Geom., 6:2 (1997), 307–324 | MR | Zbl
[11] P. Jahnke, I. Radloff, “Gorenstein Fano threefolds with base points in the anticanonical system”, Compos. Math., 142:2 (2006), 422–432 | DOI | MR | Zbl
[12] V. V. Przhyjalkowski, I. A. Cheltsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421 | DOI | DOI | MR | Zbl
[13] P. Jahnke, I. Radloff, “Terminal Fano threefolds and their smoothings”, Math. Z., 269:3–4 (2011), 1129–1136 | DOI | MR | Zbl
[14] R. Lazarsfeld, Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, Ergeb. Math. Grenzgeb., 49, Springer-Verlag, Berlin, 2004, xviii+385 pp. | MR | Zbl
[15] J. Kollár (Ed.), Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah (Salt Lake City, UT, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992, 258 pp. | MR
[16] M. Kawakita, “Inversion of adjunction on log canonicity”, Invent. Math., 167 (2007), 129–133 | DOI | MR | Zbl
[17] V. A. Iskovskikh, “Double projection from a line on Fano threefolds of the first kind”, Math. USSR-Sb., 66:1 (1990), 265–284 | DOI | MR | Zbl
[18] V. V. Šokurov, “The existence of a straight line on Fano 3-folds”, Math. USSR-Izv., 15:1 (1980), 173–209 | DOI | MR | Zbl | Zbl
[19] J. Kollár, “Flops”, Nagoya Math. J., 113 (1989), 15–36 | MR | Zbl
[20] S. Cutkosky, “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280:3 (1988), 521–525 | DOI | MR | Zbl
[21] J. Kollár, “Flips, flops, minimal models, etc.”, Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 113–199 | MR | Zbl