On K\"uchle varieties with Picard number greater than~1
Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 698-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the geometry of Küchle varieties (that is, Fano fourfolds of index 1 contained in Grassmannians as zero loci of sections of equivariant vector bundles) with Picard number greater than 1. We also describe the structure of their derived categories.
Keywords: Fano varieties, special varieties, semiorthogonal decompositions of derived categories.
@article{IM2_2015_79_4_a2,
     author = {A. G. Kuznetsov},
     title = {On {K\"uchle} varieties with {Picard} number greater than~1},
     journal = {Izvestiya. Mathematics },
     pages = {698--709},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a2/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - On K\"uchle varieties with Picard number greater than~1
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 698
EP  - 709
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a2/
LA  - en
ID  - IM2_2015_79_4_a2
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T On K\"uchle varieties with Picard number greater than~1
%J Izvestiya. Mathematics 
%D 2015
%P 698-709
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a2/
%G en
%F IM2_2015_79_4_a2
A. G. Kuznetsov. On K\"uchle varieties with Picard number greater than~1. Izvestiya. Mathematics , Tome 79 (2015) no. 4, pp. 698-709. http://geodesic.mathdoc.fr/item/IM2_2015_79_4_a2/

[1] O. Küchle, “On Fano 4-folds of index 1 and homogeneous vector bundles over Grassmannians”, Math. Z., 218:4 (1995), 563–575 | DOI | MR | Zbl

[2] C. Casagrande, Rank 2 quasiparabolic vector bundles on $\mathbb{P}^1$ and the variety of linear subspaces contained in two odd-dimensional quadrics, arXiv: 1410.3087

[3] L. Manivel, On Fano manifolds of Picard number one, arXiv: 1502.00475

[4] A. Kuznetsov, “Derived categories of cubic fourfolds”, Cohomological and geometric approaches to rationality problems, Progr. Math., 282, Birkhäuser, Boston, MA, 2010, 219–243 | DOI | MR | Zbl

[5] A. Beauville, R. Donagi, “La variété des droites d'une hypersurface cubique de dimension 4”, C. R. Acad. Sci. Paris Sér. I Math., 301:14 (1985), 703–706 | MR | Zbl

[6] Ch. Lehn, M. Lehn, Ch. Sorger, D. van Straten, Twisted cubics on cubic fourfolds, arXiv: 1305.0178

[7] J. Harris, L. W. Tu, “On symmetric and skew-symmetric determinantal varieties”, Topology, 23:1 (1984), 71–84 | DOI | MR | Zbl

[8] A. Kuznetsov, “Derived categories of quadric fibrations and intersections of quadrics”, Adv. Math., 218:5 (2008), 1340–1369 | DOI | MR | Zbl

[9] A. Kuznetsov, Semiorthogonal decompositions in algebraic geometry, arXiv: 1404.3143

[10] A. Kuznetsov, A. Perry, Derived categories of cyclic covers and their branch divisors, arXiv: 1411.1799

[11] A. Bondal, D. Orlov, Semiorthogonal decomposition for algebraic varieties, arXiv: alg-geom/9506012

[12] A. G. Èlashvili, “Canonical form and stationary subalgebras of points of general position for simple linear Lie groups”, Funct. Anal. Appl., 6:1 (1972), 44–53 | DOI | MR | Zbl