Simple finite-dimensional right-alternative superalgebras of Abelian type of characteristic zero
Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 554-580

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify simple finite-dimensional right-alternative superalgebras $A=A_0\oplus A_1$ over a field of characteristic zero in which the even part $A_0$ is associative and commutative, while $A_1$ is an associative $A_0$-bimodule. We prove that every such superalgebra $A=A_0\oplus A_1$ is obtained by doubling the semisimple even part $A_0$, and the multiplication in $A$ is defined using a suitable automorphism and a linear operator acting on $A_0$.
Keywords: simple superalgebra, right-alternative superalgebra.
@article{IM2_2015_79_3_a4,
     author = {S. V. Pchelintsev and O. V. Shashkov},
     title = {Simple finite-dimensional right-alternative superalgebras of {Abelian} type of characteristic zero},
     journal = {Izvestiya. Mathematics },
     pages = {554--580},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a4/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - O. V. Shashkov
TI  - Simple finite-dimensional right-alternative superalgebras of Abelian type of characteristic zero
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 554
EP  - 580
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a4/
LA  - en
ID  - IM2_2015_79_3_a4
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A O. V. Shashkov
%T Simple finite-dimensional right-alternative superalgebras of Abelian type of characteristic zero
%J Izvestiya. Mathematics 
%D 2015
%P 554-580
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a4/
%G en
%F IM2_2015_79_3_a4
S. V. Pchelintsev; O. V. Shashkov. Simple finite-dimensional right-alternative superalgebras of Abelian type of characteristic zero. Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 554-580. http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a4/