Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat--Tits buildings
Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 512-553.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct $p$-adic analogues of operator colligations and their characteristic functions. Consider a $p$-adic group $\mathbf G=\mathrm{GL}(\alpha+k\infty,\mathbb Q_p)$, a subgroup $L=\mathrm O(k\infty,\mathbb Z_p)$ of $\mathbf G$ and a subgroup $\mathbf K=\mathrm O(\infty,\mathbb Z_p)$ which is diagonally embedded in $L$. We show that the space $\Gamma=\mathbf K\setminus\mathbf G/\mathbf K$ of double cosets admits the structure of a semigroup and acts naturally on the space of $\mathbf K$-fixed vectors of any unitary representation of $\mathbf G$. With each double coset we associate a ‘characteristic function’ that sends a certain Bruhat–Tits building to another building (the buildings are finite-dimensional) in such a way that the image of the distinguished boundary lies in the distinguished boundary. The second building admits the structure of a (Nazarov) semigroup, and the product in $\Gamma$ corresponds to the pointwise product of characteristic functions.
Keywords: Bruhat–Tits buildings, lattices, Weil representation, characteristic functions, simplicial maps.
@article{IM2_2015_79_3_a3,
     author = {Yu. A. Neretin},
     title = {Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on {Bruhat--Tits} buildings},
     journal = {Izvestiya. Mathematics },
     pages = {512--553},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat--Tits buildings
JO  - Izvestiya. Mathematics 
PY  - 2015
SP  - 512
EP  - 553
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a3/
LA  - en
ID  - IM2_2015_79_3_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat--Tits buildings
%J Izvestiya. Mathematics 
%D 2015
%P 512-553
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a3/
%G en
%F IM2_2015_79_3_a3
Yu. A. Neretin. Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat--Tits buildings. Izvestiya. Mathematics , Tome 79 (2015) no. 3, pp. 512-553. http://geodesic.mathdoc.fr/item/IM2_2015_79_3_a3/

[1] N. J. Wildberger, “Hypergroups, symmetric spaces, and wrapping maps”, Probability measures on groups and related structures. XI (Oberwolfach, 1994), World Sci. Publ., River Edge, NJ, 1995, 406–425 | MR | Zbl

[2] I. M. Gelfand, “Sfericheskie funktsii na rimanovykh simmetricheskikh prostranstvakh”, Dokl. AN SSSR, 70 (1950), 5–8 | MR | Zbl

[3] R. Godement, “A theory of spherical functions. I”, Trans. Amer. Math. Soc., 73:3 (1952), 496–556 | DOI | MR | Zbl

[4] N. Iwahori, “On the structure of a Hecke ring of a Chevalley group over a finite field”, J. Fac. Sci. Univ. Tokyo Sect. I, 10 (1964), 215–236 | MR | Zbl

[5] N. Iwahori, H. Matsumoto, “On some Bruhat decomposition and the structure of the Hecke rings of $p$-adic Chevalley groups”, Inst. Hautes Études Sci. Publ. Math., 25:1 (1965), 5–48 | DOI | MR | Zbl

[6] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl

[7] G. I. Olshanskii, “Unitary representations of infinite dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 269–463 | MR | Zbl

[8] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Math. Soc. Monogr. (N.S.), 16, Oxford Univ. Press, New York, 1996, xiv+417 pp. | MR | Zbl

[9] Yu. A. Neretin, Lectures on Gaussian integral operators and classical groups, EMS Ser. Lect. Math., Eur. Math. Soc. (EMS), Zürich, 2011, xii+559 pp. | DOI | MR | Zbl

[10] M. S. Brodskii, “Unitary operator colligations and their characteristic functions”, Russian Math. Surveys, 33:4 (1978), 159–191 | DOI | MR | Zbl

[11] G. I. Ol'shanskii, “On semigroups related to infinite-dimensional groups”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 67–101 | MR | Zbl

[12] Yu. A. Neretin, On degeneration of convolutions of double cosets at infinite-dimensional limit, arXiv: 1211.6149

[13] R. S. Ismagilov, “Elementary spherical functions on the group $SL(2,P)$ over a field $P$, which is not locally compact, with respect to the subgroup of matrices with integral elements”, Math. USSR-Izv., 1:2 (1967), 349–380 | DOI | MR | Zbl

[14] R. S. Ismagilov, “Spherical functions over a normed field whose residue field is infinite”, Funct. Anal. Appl., 4:1 (1970), 37–45 | DOI | MR | Zbl

[15] G. I. Olshanskii, “New “large” groups of type I”, J. Soviet Math., 18:1 (1982), 22–39 | DOI | MR | Zbl

[16] Yu. A. Neretin, “Sphericity and multiplication of double cosets for infinite-dimensional classical groups”, Funct. Anal. Appl., 45:3 (2011), 225–239 | DOI | DOI | MR | Zbl

[17] Yu. A. Neretin, Infinite symmetric groups and combinatorial constructions of topological field theory type, arXiv: 1502.03472

[18] Yu. A. Neretin, “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories”, Int. Math. Res. Not. IMRN, 2012:3 (2012), 501–523 | MR | Zbl

[19] Yu. A. Neretin, Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument, arXiv: 1211.7091

[20] Yu. A. Neretin, “Multi-operator colligations and multivariate characteristic functions”, Anal. Math. Phys., 1:2-3 (2011), 121–138 | DOI | MR | Zbl

[21] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl

[22] M. S. Livshits, “On a class of linear operators in Hilbert space”, Amer. Math. Soc. Transl. (2), 13, Amer. Math. Soc., Providence, R.I., 1960, 61–83 | MR | MR | Zbl | Zbl

[23] V. P. Potapov, “The multiplicative structure of $J$-contractive matrix functions”, Amer. Math. Soc. Transl. (2), 15, Amer. Math. Soc., Providence, R.I., 1960, 131–243 | MR | MR | Zbl | Zbl

[24] G. I. Olshanskii, “Infinite-dimensional classical groups of finite $r$-rank: Description of representations and asymptotic theory”, Funct. Anal. Appl., 18:1 (1984), 22–34 | DOI | MR | Zbl

[25] G. I. Ol'shanskii, “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Soviet Math. Dokl., 27 (1983), 290–294 | MR | Zbl

[26] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524 | DOI | MR | Zbl

[27] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math. (2), 161:3 (2005), 1319–1422 | DOI | MR | Zbl

[28] G. I. Olshanskii, “Unitary representations of $(G,K)$-pairs connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl

[29] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl

[30] A. M. Vershik, S. V. Kerov, “Four drafts on the representation theory of the group of infinite matrices over a finite field”, Zap. nauchn. sem. POMI, 344 (2007), 5–36, POMI, SPb. | MR

[31] Yu. A. Neretin, “The space $L^2$ on semi-infinite Grassmannian over finite field”, Adv. Math., 250 (2014), 320–350 | DOI | MR | Zbl

[32] V. Gorin, S. Kerov, A. Vershik, “Finite traces and representations of the group of infinite matrices over a finite field”, Adv. Math., 254 (2014), 331–395 ; arXiv: 1209.4945 | DOI | MR | Zbl

[33] M. Nazarov, “Oscillator semigroup over a non-Archimedean field”, J. Funct. Anal., 128:2 (1995), 384–438 | DOI | MR | Zbl

[34] M. Nazarov, Yu. Neretin, G. Olshanskii, “Semi-groupes engendrés par la représentation de Weil du groupe symplectique de dimension infinie”, C. R. Acad. Sci. Paris Sér. I Math., 309:7 (1989), 443–446 | MR | Zbl

[35] Yu. A. Neretin, “Hua measures on the space of $p$-adic matrices and inverse limits of Grassmannians”, Izv. Math., 77:5 (2013), 941–953 | DOI | DOI | MR | Zbl

[36] Yu. A. Neretin, “Hua-type integrals over unitary groups and over projective limits of unitary groups”, Duke Math. J., 114:2 (2002), 239–266 | DOI | MR | Zbl

[37] Yu. A. Neretin, “Combinatorial analogues of the group of diffeomorphisms of the circle”, Russian Acad. Sci. Izv. Math., 41:2 (1993), 337–349 | DOI | MR | Zbl

[38] Yu. A. Neretin, On $p$-adic colligations and 'rational maps' of Bruhat–Tits trees, arXiv: 1301.5453

[39] M. Baker, “An introduction to Berkovich analytic spaces and non-Archimedean potential theory on curves”, $p$-adic geometry, Univ. Lecture Ser., 45, Amer. Math. Soc., Providence, RI, 2008, 123–174 | MR | Zbl

[40] B. Conrad, “Several approaches to non-Archimedean geometry”, $p$-adic geometry, Univ. Lecture Ser., 45, Amer. Math. Soc., Providence, RI, 2008, 9–63 | MR | Zbl

[41] A. Weil, Basic number theory, Grundlehren Math. Wiss., 144, Springer-Verlag, New York, 1967, xviii+294 pp. | MR | MR | Zbl | Zbl

[42] P. Garrett, Buildings and classical groups, Chapman Hall, London, 1997, xii+373 pp. | MR | Zbl

[43] Yu. A. Neretin, “On compression of Bruhat–Tits buildings”, J. Math. Sci. (N. Y.), 138:3 (2006), 5722–5726 | DOI | MR | Zbl

[44] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002, xii+544 pp. | MR | Zbl

[45] A. N. Shiryayev, Probability, Grad. Texts in Math., 95, Springer-Verlag, New York, 1984, xi+577 pp. | DOI | MR | MR | Zbl | Zbl